Abstract

In clinical practice, therapeutic and diagnostic endoluminal procedures of the human body often use a scope, catheter, or passive pill-shaped camera. Unfortunately, such devices used in the circulatory system and gastrointestinal tract are often uncomfortable, invasive, and require the patient to be sedated. With current technology, regions of the body are often inaccessible to the clinician. Herein, a magnetically actuated soft endoluminal inchworm robot that may extend clinicians’ ability to reach further into the human body and practice new procedures is described, modeled, and analyzed. A detailed locomotion model is proposed that takes into account the elastic deformation of the robot and its interactions with the environment. The model is validated with in vitro and ex vivo (pig intestine) physical experiments and is shown to capture the robot’s gait characteristics through a lumen. Utilizing dimensional analysis, the effects of the mechanical properties and design variables on the robot’s motion are investigated further to advance the understanding of this endoluminal robot concept.

References

1.
Zheng
,
L.
,
Min
,
Z. O.
,
Varun
,
N.
,
Vu
,
D. T.
,
Hongliang
,
R.
,
Theodoros
,
K.
, and
Haoyong
,
Y.
,
2016
, “
Design of a Novel Flexible Endoscope-Cardioscope
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051014
.
2.
Loeve
,
A.
,
Breedveld
,
P.
, and
Dankelman
,
J.
,
2010
, “
Scopes Too Flexible···and Too Stiff
,”
IEEE Pulse
,
1
(
3
), pp.
26
41
.
3.
Song
,
Y.
,
Guo
,
S.
,
Yin
,
X.
,
Zhang
,
L.
,
Hirata
,
H.
,
Ishihara
,
H.
, and
Tamiya
,
T.
,
2018
, “
Performance Evaluation of a Robot-Assisted Catheter Operating System With Haptic Feedback
,”
Biomed. Microdev.
,
20
(
2
), p.
50
.
4.
Pham
,
L. N.
,
Steiner
,
J. A.
,
Leang
,
K. K.
, and
Abbott
,
J. J.
,
2020
, “
Soft Endoluminal Robots Propelled by Rotating Magnetic Dipole Fields
,”
IEEE Trans. Med. Robot.
,
2
(
4
), pp.
598
607
.
5.
Ashwin
,
K. P.
, and
Ghosal
,
A.
,
2019
, “
A Soft-Robotic End-Effector for Independently Actuating Endoscopic Catheters
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
061004
.
6.
Thomas
,
T. L.
,
Kalpathy Venkiteswaran
,
V.
,
Ananthasuresh
,
G. K.
, and
Misra
,
S.
,
2021
, “
Surgical Applications of Compliant Mechanisms: A Review
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
020801
.
7.
Kim
,
B.
,
Park
,
S.
, and
Park
,
J.-O.
,
2009
, “
Microrobots for a Capsule Endoscope
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Singapore
,
July 14–17
, pp.
729
734
.
8.
Moglia
,
A.
,
Menciassi
,
A.
,
Schurr
,
M. O.
, and
Dario
,
P.
,
2007
, “
Wireless Capsule Endoscopy: From Diagnostic Devices to Multipurpose Robotic Systems
,”
Biomed. Microdev.
,
9
(
2
), pp.
235
243
.
9.
Pi
,
X.
,
Lin
,
Y.
,
Wei
,
K.
,
Liu
,
H.
,
Wang
,
G.
,
Zheng
,
X.
,
Wen
,
Z.
, and
Li
,
D.
,
2010
, “
A Novel Micro-fabricated Thruster for Drug Release in Remote Controlled Capsule
,”
Sens. Actuator A Phys.
,
159
(
2
), pp.
227
232
.
10.
Kim
,
B.
,
Park
,
S.
,
Jee
,
C. Y.
, and
Yoon
,
S.-J.
,
2005
, “
An Earthworm-Like Locomotive Mechanism for Capsule Endoscopes
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Edmonton, AB, Canada
,
Aug. 2–6
, pp.
2997
3002
.
11.
Hosokawa
,
D.
,
Ishikawa
,
T.
,
Morikawa
,
H.
,
Imai
,
Y.
, and
Yamaguchi
,
T.
,
2009
, “
Development of a Biologically Inspired Locomotion System for a Capsule Endoscope
,”
Int. J. Med. Robot.
,
5
(
4
), pp.
471
478
.
12.
Jung
,
K.
,
Koo
,
J. C.
,
Lee
,
Y. K.
, and
Choi
,
H. R.
,
2007
, “
Artificial Annelid Robot Driven by Soft Actuators
,”
Bioinspir. Biomim.
,
2
(
2
), pp.
S42
549
.
13.
Wang
,
K.
,
Yan
,
G.
,
Ma
,
G.
, and
Ye
,
D.
,
2009
, “
An Earthworm-Like Robotic Endoscope System for Human Intestine: Design, Analysis, and Experiment
,”
Ann. Biomed. Eng.
,
37
(
1
), pp.
210
221
.
14.
Valdastri
,
P.
,
Webster
,
R. J.
,
Quaglia
,
C.
,
Quirini
,
M.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2009
, “
A New Mechanism for Mesoscale Legged Locomotion in Compliant Tubular Environments
,”
IEEE Trans. Robot.
,
25
(
5
), pp.
1047
1057
.
15.
Kim
,
H. M.
,
Yang
,
S.
,
Kim
,
J.
,
Park
,
S.
,
Cho
,
J. H.
,
Park
,
J. Y.
,
Kim
,
T. S.
,
Yoon
,
E. -S.
,
Song
,
S. Y.
, and
Bang
,
S.
,
2010
, “
Active Locomotion of a Paddling-Based Capsule Endoscope in an In Vitro and In Vivo Experiment (With Videos)
,”
Gastrointest. Endosc.
,
72
(
2
), pp.
381
387
.
16.
Nam
,
J.
,
Jeon
,
S.
,
Kim
,
S.
, and
Jang
,
G.
,
2014
, “
Crawling Microrobot Actuated by a Magnetic Navigation System in Tubular Environments
,”
Sens. Actuators A: Phys.
,
209
, pp.
100
106
.
17.
Formosa
,
G. A.
,
Prendergast
,
J. M.
,
Edmundowicz
,
S. A.
, and
Rentschler
,
M. E.
,
2020
, “
Novel Optimization-Based Design and Surgical Evaluation of a Treaded Robotic Capsule Colonoscope
,”
IEEE Trans. Robot.
,
36
(
2
), pp.
545
552
.
18.
Mahoney
,
A. W.
, and
Abbott
,
J. J.
,
2014
, “
Generating Rotating Magnetic Fields With a Single Permanent Magnet for Propulsion of Untethered Magnetic Devices in a Lumen
,”
IEEE Trans. Robot.
,
30
(
2
), pp.
411
420
.
19.
Lee
,
J.-S.
,
Kim
,
B.
, and
Hong
,
Y.-S.
,
2009
, “
A Flexible Chain-Based Screw Propeller for Capsule Endoscopes
,”
Int. J. Precis. Eng. Manuf.
,
10
(
4
), pp.
27
34
.
20.
Chiba
,
A.
,
Sendoh
,
M.
,
Ishiyama
,
K.
,
Arai
,
K. I.
,
Kawano
,
H.
,
Uchiyama
,
A.
, and
Takizawa
,
H.
,
2007
, “
Magnetic Actuator for a Capsule Endoscope Navigation System
,”
J. Magn.
,
12
(
2
), pp.
89
92
.
21.
Carta
,
R.
,
Sfakiotakis
,
M.
,
Pateromichelakis
,
N.
,
Thoné
,
J.
,
Tsakiris
,
D. P.
, and
Puers
,
R.
,
2011
, “
A Multi-Coil Inductive Powering System for an Endoscopic Capsule With Vibratory Actuation
,”
Sens. Actuator A Phys.
,
172
(
1
), pp.
253
258
.
22.
Simaan
,
N.
,
Yasin
,
R. M.
, and
Wang
,
L.
,
2018
, “
Medical Technologies and Challenges of Robot-Assisted Minimally Invasive Intervention and Diagnostics
,”
Annu. Rev. Control Robot. Auton. Syst.
,
1
(
1
), pp.
465
490
.
23.
Simi
,
M.
,
Valdastri
,
P.
,
Quaglia
,
C.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2010
, “
Design, Fabrication, and Testing of a Capsule With Hybrid Locomotion for Gastrointestinal Tract Exploration
,”
IEEE/ASME Trans. Mechatron.
,
15
(
2
), pp.
170
180
.
24.
Liang
,
H.
,
Guan
,
Y.
,
Xiao
,
Z.
,
Hu
,
C.
, and
Liu
,
Z.
,
2011
, “
A Screw Propelling Capsule Robot
,”
Proceedings of the IEEE International Conference on Information and Automation
,
Shenzhen, China
,
June 6–8
, pp.
786
791
.
25.
Xin
,
W.
,
Yan
,
G.
, and
Wang
,
W.
,
2010
, “
Study of a Wireless Power Transmission System for an Active Capsule Endoscope
,”
Int. J. Med. Robot.
,
6
(
1
), pp.
113
122
.
26.
Sitti
,
M.
, and
Wiersma
,
D. S.
,
2020
, “
Pros and Cons: Magnetic Versus Optical Microrobots
,”
Adv. Mater.
,
32
(
20
), p.
1906766
.
27.
Xie
,
J.
,
Bi
,
C.
,
Cappelleri
,
D. J.
, and
Chakraborty
,
N.
,
2021
, “
Dynamic Simulation-Guided Design of Tumbling Magnetic Microrobots
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
041005
.
28.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
.
29.
Steiner
,
J. A.
,
Hussain
,
O. A.
,
Pham
,
L. N.
,
Abbott
,
J. J.
, and
Leang
,
K. K.
,
2019
, “
Toward Magneto-Electroactive Endoluminal Soft (MEESo) Robots
,”
Proceedings of the ASME Dynamic Systems and Control Conference
,
Park City, UT
,
Oct. 8–11
, p.
V003T20A002
.
30.
Petruska
,
A. J.
, and
Abbott
,
J. J.
,
2013
, “
Optimal Permanent-Magnet Geometries for Dipole Field Approximation
,”
IEEE Trans. Magn.
,
49
(
2
), pp.
811
819
.
31.
Abbott
,
J. J.
,
Diller
,
E.
, and
Petruska
,
A. J.
,
2020
, “
Magnetic Methods in Robotics
,”
Annu. Rev. Control Robot. Auton. Syst.
,
3
, pp.
57
90
.
32.
Buckingham
,
E.
,
1914
, “
On Physically Similar Systems; Illustrations of the Use of Dimensional Equations
,”
Phys. Rev.
,
4
(
4
), pp.
345
376
.
You do not currently have access to this content.