Abstract

In this paper, a robotic ankle–foot orthosis (AFO) is developed for individuals with a paretic ankle, and an impedance-based assist-as-needed controller is designed for the robotic AFO to provide adaptive assistance. First, a description of the robotic AFO hardware design is presented. Next, the design of the finite state machine is introduced, followed by an introduction to the modeling of the robotic AFO. Additionally, the control of the robotic AFO is presented. An impedance-based high-level controller that is composed of an ankle impedance based torque generation controller and an impedance controller is designed for the high-level control. A compensated low-level controller that is composed of a braking controller and a proportional-derivative controller with a compensation part is designed for the low-level control. Finally, a pilot study with eight healthy participants is conducted, and the experimental results demonstrate that with the proposed control algorithm, the robotic AFO has the potential for ankle rehabilitation by providing adaptive assistance. In the assisted condition with a high level of assistance, reductions of 8% and 20.1% of the root mean square of the tibialis anterior and lateral soleus activities are observed, respectively.

References

1.
Nuckols
,
R. W.
,
Dick
,
T. J. M.
,
Beck
,
O. N.
, and
Sawicki
,
G. S.
,
2020
, “
Ultrasound Imaging Links Soleus Muscle Neuromechanics and Energetics During Human Walking With Elastic Ankle Exoskeletons
,”
Sci. Rep.
,
10
(
1
), p.
3604
.
2.
Langhorne
,
P.
,
Bernhardt
,
J.
, and
Kwakkel
,
G.
,
2011
, “
Stroke Rehabilitation
,”
Lancet
,
377
(
9778
), pp.
1693
1702
.
3.
Farris
,
D. J.
, and
Sawicki
,
G. S.
,
2012
, “
The Mechanics and Energetics of Human Walking and Running: A Joint Level Perspective
,”
J. R. Soc. Interface
,
9
(
66
), pp.
110
118
.
4.
Neptune
,
R. R.
,
Kautz
,
S. A.
, and
Zajac
,
F. E.
,
2001
, “
Contributions of the Individual Ankle Plantar flexors to Support, Forward Progression and Swing Initiation During Walking
,”
J. Biomech.
,
34
(
11
), pp.
1387
1398
.
5.
Winter
,
D. A.
,
1991
,
Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological
,
University of Waterloo Press
,
Ontario, Canada
.
6.
Chen
,
G.
,
Patten
,
C.
,
Kothari
,
D. H.
, and
Zajac
,
F. E.
,
2005
, “
Gait Differences Between Individuals With Post-Stroke Hemiparesis and Non-Disabled Controls at Matched Speeds
,”
Gait Posture
,
22
(
1
), pp.
51
56
.
7.
Stoquart
,
G.
,
Detrembleur
,
C.
, and
Lejeune
,
T. M.
,
2012
, “
The Reasons why Stroke Patients Expend so Much Energy to Walk Slowly
,”
Gait Posture
,
36
(
3
), pp.
409
413
.
8.
Olney
,
S. J.
, and
Richards
,
C.
,
1996
, “
Hemiparetic Gait Following Stroke. Part I: Characteristics
,”
Gait Posture
,
4
(
2
), pp.
136
148
.
9.
Shorter
,
K. A.
,
Xia
,
J. C.
,
Hsiao-Wecksler
,
E. T.
,
Durfee
,
W. K.
, and
Kogler
,
G. F.
,
2013
, “
Technologies for Powered Ankle-Foot Orthotic Systems: Possibilities and Challenges
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
337
347
.
10.
Chen
,
B.
,
Zi
,
B.
,
Zeng
,
Y. S.
,
Qin
,
L.
, and
Liao
,
W. H.
,
2018
, “
Ankle-foot Orthoses for Rehabilitation and Reducing Metabolic Cost of Walking: Possibilities and Challenges
,”
Mechatronics
,
53
, pp.
241
250
.
11.
Pinto-Fernandez
,
D.
,
Torricelli
,
D.
,
Sanchez-Villamanan
,
M. D.
,
Aller
,
F.
,
Mombaur
,
K.
,
Conti
,
R.
,
Vitiello
,
N.
,
Moreno
,
J. C.
, and
Pons
,
J. L.
,
2020
, “
Performance Evaluation of Lower Limb Exoskeletons: A Systematic Review
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
7
), pp.
1573
1583
.
12.
Chen
,
B.
,
Zi
,
B.
,
Wang
,
Z. Y.
,
Qin
,
L.
, and
Liao
,
W. H.
,
2019
, “
Knee Exoskeletons for Gait Rehabilitation and Human Performance Augmentation: A State-of-the-Art
,”
Mech. Mach. Theory
,
134
, pp.
499
511
.
13.
Shao
,
Y. X.
,
Zhang
,
W. X.
,
Su
,
Y. J.
, and
Ding
,
X. L.
,
2021
, “
Design and Optimisation of Load-Adaptive Actuator With Variable Stiffness for Compact Ankle Exoskeleton
,”
Mech. Mach. Theory
,
161
, p.
104323
.
14.
Yandell
,
M. B.
,
Tacca
,
J. R.
, and
Zelik
,
K. E.
,
2019
, “
Design of a Low Profile, Unpowered Ankle Exoskeleton That Fits Under Clothes: Overcoming Practical Barriers to Widespread Societal Adoption
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
4
), pp.
712
723
.
15.
Wang
,
X. Y.
,
Guo
,
S.
,
Qu
,
B. J.
,
Song
,
M.
, and
Qu
,
H. B.
,
2020
, “
Design of a Passive Gait-Based Ankle-Foot Exoskeleton with Self-Adaptive Capability
,”
Chin. J. Mech. Eng.
,
33
(
49
), pp.
1
11
.
16.
Oba
,
T.
,
Kadone
,
H.
,
Hassan
,
M.
, and
Suzuki
,
K.
,
2019
, “
Robotic Ankle-Foot Orthosis With a Variable Viscosity Link Using MR Fluid
,”
IEEE/ASME Trans. Mechatron.
,
24
(
2
), pp.
495
504
.
17.
Kumar
,
S.
,
Zwall
,
M. R.
,
Bolívar-Nieto
,
E. A.
,
Gregg
,
R. D.
, and
Gans
,
N.
,
2020
, “
Extremum Seeking Control for Stiffness Auto-Tuning of a Quasi-Passive Ankle Exoskeleton
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4604
4611
.
18.
Liu
,
J. Z.
,
Xiong
,
C. H.
, and
Fu
,
C. L.
,
2019
, “
An Ankle Exoskeleton Using a Lightweight Motor to Create High Power Assistance for Push-off
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041001
.
19.
Moltedo
,
M.
,
Cavallo
,
G.
,
Baček
,
T.
,
Lataire
,
J.
,
Vanderborght
,
B.
,
Lefeber
,
D.
, and
Rodriguez-Guerrero
,
C.
,
2019
, “
Variable Stiffness Ankle Actuator for Use in Robotic-Assisted Walking: Control Strategy and Experimental Characterization
,”
Mech. Mach. Theory
,
134
, pp.
604
624
.
20.
Moltedo
,
M.
,
Baček
,
T.
,
Serrien
,
B.
,
Langlois
,
K.
,
Vanderborght
,
B.
,
Lefeber
,
D.
, and
Rodriguez-Guerrero
,
C.
,
2020
, “
Walking with a Powered Ankle-Foot Orthosis: the Effects of Actuation Timing and Stiffness Level on Healthy Users
,”
J. Neuroeng. Rehabil.
,
17
(
1
), p.
98
.
21.
Choi
,
H.
,
Park
,
Y. J.
,
Seo
,
K.
,
Lee
,
J.
,
Lee
,
S.
, and
Shim
,
Y.
,
2018
, “
A Multi-Functional Ankle Exoskeleton for Mobility Enhancement of Gait-Impaired Individuals and Seniors
,”
IEEE Rob. Autom. Lett.
,
3
(
1
), pp.
411
418
.
22.
Yeung
,
L. F.
,
Ockenfeld
,
C.
,
Pang
,
M. K.
,
Wai
,
H. W.
,
Soo
,
O. Y.
,
Li
,
S. W.
, and
Tong
,
K. Y.
,
2018
, “
Randomized Controlled Trial of Robot-Assisted Gait Training with Dorsiflexion Assistance on Chronic Stroke Patients Wearing Ankle-Foot-Orthosis
,”
J. Neuroeng. Rehabil.
,
15
(
1
), p.
51
.
23.
Russell Esposito
,
E.
,
Schmidtbauer
,
K. A.
, and
Wilken
,
J. M.
,
2018
, “
Experimental Comparisons of Passive and Powered Ankle-Foot Orthoses in Individuals with Limb Reconstruction
,”
J. Neuroeng. Rehabil.
,
15
(
1
), p.
111
.
24.
Tamburella
,
F.
,
Tagliamonte
,
N. L.
,
Pisotta
,
I.
,
Masciullo
,
M.
,
Arquilla
,
M.
,
van Asseldonk
,
E. H. F.
,
van der Kooij
,
H.
, et al
,
2020
, “
Neuromuscular Controller Embedded in a Powered Ankle Exoskeleton: Effects on Gait, Clinical Features and Subjective Perspective of Incomplete Spinal Cord Injured Subjects
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
5
), pp.
1157
1167
.
25.
Wang
,
W.
,
Chen
,
J. Y.
,
Ji
,
Y. D.
,
Jin
,
W.
,
Liu
,
J. T.
, and
Zhang
,
J. J.
,
2020
, “
Evaluation of Lower leg Muscle Activities During Human Walking Assisted by an Ankle Exoskeleton
,”
IEEE Trans. Ind. Inf.
,
16
(
11
), pp.
7168
7176
.
26.
Gasparri
,
G. M.
,
Luque
,
J.
, and
Lerner
,
Z. F.
,
2019
, “
Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
4
), pp.
751
759
.
27.
Orekhov
,
G.
,
Fang
,
Y.
,
Luque
,
J.
, and
Lerner
,
Z. F.
,
2020
, “
Ankle Exoskeleton Assistance can Improve Over-Ground Walking Economy in Individuals with Cerebral Palsy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
2
), pp.
461
467
.
28.
Zhang
,
Y. F.
,
Nolan
,
K. J.
, and
Zanotto
,
D.
,
2019
, “
Oscillator-based Transparent Control of an Active/Semiactive Ankle-Foot Orthosis
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
247
253
.
29.
Jacobs
,
D. A.
,
Koller
,
J. R.
,
Steele
,
K. M.
, and
Ferris
,
D. P.
,
2018
, “
Motor Modules During Adaptation to Walking in a Powered Ankle Exoskeleton
,”
J. Neuroeng. Rehabil.
,
15
(
1
), p.
2
.
30.
Mccain
,
E. M.
,
Dick
,
T. J. M.
,
Giest
,
T. N.
,
Nuckols
,
R. W.
,
Lewek
,
M. D.
,
Saul
,
K. R.
, and
Sawicki
,
G. S.
,
2019
, “
Mechanics and Energetics of Post-Stroke Walking Aided by a Powered Ankle Exoskeleton With Speed-Adaptive Myoelectric Control
,”
J. Neuroeng. Rehabil.
,
16
(
1
), p.
57
.
31.
Zhuang
,
Y.
,
Leng
,
Y.
,
Zhou
,
J.
,
Song
,
R.
,
Li
,
L.
, and
Su
,
S. W.
,
2021
, “
Voluntary Control of an Ankle Joint Exoskeleton by Able-Bodied Individuals and Stroke Survivors Using EMG-Based Admittance Control Scheme
,”
IEEE Trans. Biomed. Eng.
, 68(2), pp.
695
705
.
32.
Galle
,
S.
,
Malcolm
,
P.
,
Collins
,
S. H.
, and
De Clercq
,
D.
,
2017
, “
Reducing the Metabolic Cost of Walking With an Ankle Exoskeleton: Interaction Between Actuation Timing and Power
,”
J. Neuroeng. Rehabil.
,
14
(
1
), p.
35
.
33.
Zhang
,
J. J.
,
Fiers
,
P.
,
Witter
,
K. A.
,
Jackson
,
R. W.
,
Poggensee
,
K. L.
,
Atkeson
,
C. G.
, and
Collins
,
S. H.
,
2017
, “
Human-in-the-Loop Optimization of Exoskeleton Assistance During Walking
,”
Science
,
356
(
6344
), pp.
1280
1284
.
34.
Tsoi
,
Y. H.
, and
Xie
,
S. Q.
,
2009
, “
Impedance Control of Ankle Rehabilitation Robot
,”
Proceedings of the IEEE International Conference on Robotics and Biomimetics
,
Bangkok, Thailand
, pp.
840
845
.
35.
Nuckols
,
R. W.
, and
Sawicki
,
G. S.
,
2020
, “
Impact of Elastic Ankle Exoskeleton Stiffness on Neuromechanics and Energetics of Human Walking Across Multiple Speeds
,”
J. Neuroeng. Rehabil.
,
17
(
1
), p.
75
.
36.
Siviy
,
C.
,
Bae
,
J.
,
Baker
,
L.
,
Porciuncula
,
F.
,
Baker
,
T.
,
Ellis
,
T. D.
,
Awad
,
L. N.
, and
Walsh
,
C. J.
,
2020
, “
Offline Assistance Optimization of a Soft Exosuit for Augmenting Ankle Power of Stroke Survivors During Walking
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
828
835
.
37.
Chen
,
B.
,
Zi
,
B.
,
Wang
,
Z. Y.
,
Li
,
Y.
, and
Qian
,
J.
, 2021, “
Development of Robotic Ankle-Foot Orthosis With Series Elastic Actuator and Magneto-Rheological Brake
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011002
.
38.
Calanca
,
A.
, and
Fiorini
,
P.
,
2018
, “
A Rationale for Acceleration Feedback in Force Control of Series Elastic Actuators
,”
IEEE Trans. Rob.
,
34
(
1
), pp.
48
61
.
39.
Shamaei
,
K.
,
Cenciarini
,
M.
, and
Dollar
,
A. M.
,
2011
, “
On the Mechanics of the Ankle in the Stance Phase of the Gait
,”
Proceedings of the IEEE International Conference on Engineering in Medicine and Biology Society
,
Boston, MA
, pp.
8135
8140
.
40.
Li
,
J.
,
Shen
,
B.
,
Chew
,
C. M.
,
Teo
,
C. L.
, and
Poo
,
A. N.
,
2016
, “
Novel Functional Task-Based Gait Assistance Control of Lower Extremity Assistive Device for Level Walking
,”
IEEE Trans. Ind. Electron.
, vol.
63
(
2
), pp.
1096
1106
41.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
, 4th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
42.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis
,”
IEEE/ASME Trans. Mechatron.
,
14
(
6
), pp.
667
676
.
You do not currently have access to this content.