Abstract

The redundancy resolution schemes based on the optimization of an integral performance index are investigated from the topological point of view. The topological notions of self-motion manifold, C-path-homotopy and extended aspect are clarified in relation to the limitations of the necessary conditions of optimality provided by calculus of variations. On one hand, they do not guarantee the achievement of the optimal solution, and on the other hand, they translate into a two-point boundary value problem (TPBVP), whose resolution, under certain circumstances, may not lead to a feasible solution at all. In response to the limitations of calculus of variations, a dynamic-programming-inspired formalism is developed, which is based on the discretization of the state space and on its representation in the form of multiple grids. Building upon the topological analysis, effective algorithms are designed that are able to find the optimal solution in any condition, across all C-path homotopy classes and self-motion manifolds, with no limitation due to the passage through singularities. Moreover, if the grids are representative of the manipulator’s extended aspects, the topological notion of the transitional point can be used to reduce the computational complexity of the optimal redundancy resolution algorithm. The results are demonstrated on a canonical 4R planar robot in two different scenarios.

References

1.
Siciliano
,
B.
, and
Khatib
,
O.
,
2016
,
Springer Handbook of Robotics
,
Springer International Publishing
,
New York
.
2.
Kazerounian
,
K.
, and
Wang
,
Z.
,
1988
, “
Global Versus Local Optimization in Redundancy Resolution of Robotic Manipulators
,”
Int. J. Rob. Res.
,
7
(
5
), pp.
3
12
. 10.1177/027836498800700501
3.
Nakamura
,
Y.
, and
Hanafusa
,
H.
,
1987
, “
Optimal Redundancy Control of Robot Manipulators
,”
Int. J. Rob. Res.
,
6
(
1
), pp.
32
42
. 10.1177/027836498700600103
4.
Guigue
,
A.
,
Ahmadi
,
M.
,
Hayes
,
M. J. D.
,
Langlois
,
R.
, and
Tang
,
F. C.
,
2007
, “
A Dynamic Programming Approach to Redundancy Resolution With Multiple Criteria
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Roma, Italy
,
Apr. 10–14
,
IEEE
, pp.
1375
1380
.
5.
Gao
,
J.
,
Pashkevich
,
A.
, and
Caro
,
S.
,
2017
, “
Optimization of the Robot and Positioner Motion in a Redundant Fiber Placement Workcell
,”
Mech. Mach. Theory
,
114
, pp.
170
189
. 10.1016/j.mechmachtheory.2017.04.009
6.
Shen
,
Y.
, and
Huper
,
K.
,
2005
, “
Optimal Trajectory Planning of Manipulators Subject to Motion Constraints
,”
ICAR ’05 Proceedings—12th International Conference on Advanced Robotics
,
Seattle, WA
,
July 17–20
,
IEEE
, pp.
9
16
.
7.
Galicki
,
M.
, and
Pajak
,
I.
,
1999
, “
Optimal Motions of Redundant Manipulators With State Equality Constraints
,”
Proceedings of the IEEE International Symposium on Assembly and Task Planning (ISATP’99)
,
Porto, Portugal
,
July 24
,
IEEE
, pp.
181
185
.
8.
Reiter
,
A.
,
Muller
,
A.
, and
Gattringer
,
H.
,
2018
, “
On Higher Order Inverse Kinematics Methods in Time-Optimal Trajectory Planning for Kinematically Redundant Manipulators
,”
IEEE Trans. Ind. Inf.
,
14
(
4
), pp.
1681
1690
. 10.1109/TII.2018.2792002
9.
Cefalo
,
M.
, and
Oriolo
,
G.
,
2018
, “
A General Framework for Task-Constrained Motion Planning With Moving Obstacles
,”
Robotica
,
37
(
3
), pp.
575
598
. 10.1017/S0263574718001182
10.
Bussi
,
D.
,
Barrera
,
M.
,
Trucco
,
R.
,
Salvioli
,
F.
,
Rabaioli
,
M.
,
Topa
,
E.
,
D’Ottavio
,
A.
,
Savioli
,
L.
,
Ravagnolo
,
L.
,
Martucci di Scarfizzi
,
G.
,
Franceschetti
,
P.
,
Joudrier
,
L.
,
Williams
,
A.
, and
Lim
,
T.
,
2018
, “
Challenges in the Definition, Validation and Simulation of the Ground Operations of the ExoMars 2020 Rover Surface Mission at the Rover Operations Control Centre (ROCC)
,”
69th International Astronautical Congress
,
Bremen, Germany
,
Oct. 1–5
, pp.
7425
7438
.
11.
Ferrentino
,
E.
, and
Chiacchio
,
P.
,
2018
, “
Topological Analysis of Global Inverse Kinematic Solutions for Redundant Manipulators
,”
ROMANSY 22—Robot Design, Dynamics and Control
,
Springer International Publishing
,
Rennes, France
,
June 25–28
, pp.
69
76
.
12.
FarzanehKaloorazi
,
M.
,
Bonev
,
I. A.
, and
Birglen
,
L.
,
2018
, “
Simultaneous Path Placement and Trajectory Planning Optimization for a Redundant Coordinated Robotic Workcell
,”
Mech. Mach. Theory
,
130
, pp.
346
362
. 10.1016/j.mechmachtheory.2018.08.022
13.
Zhou
,
Z.
, and
Nguyen
,
C. C.
,
1997
, “
Globally Optimal Trajectory Planning for Redundant Manipulators Using State Space Augmentation Method
,”
J. Intell. Rob. Syst.: Theory Appl.
,
19
(
1
), pp.
105
117
. 10.1023/A:1007905817998
14.
Guigue
,
A.
,
Ahmadi
,
M.
,
Langlois
,
R.
, and
Hayes
,
M. J. D.
,
2010
, “
Pareto Optimality and Multiobjective Trajectory Planning for a 7-DoF Redundant Manipulator
,”
IEEE Trans. Rob.
,
26
(
6
), pp.
1094
1099
. 10.1109/TRO.2010.2068650
15.
Dolgui
,
A.
, and
Pashkevich
,
A.
,
2009
, “
Manipulator Motion Planning for High-Speed Robotic Laser Cutting
,”
Int. J. Prod. Res.
,
47
(
20
), pp.
5691
5715
. 10.1080/00207540802070967
16.
Ferrentino
,
E.
, and
Chiacchio
,
P.
,
2018
, “
A Topological Approach to Globally-Optimal Redundancy Resolution With Dynamic Programming
,”
ROMANSY 22—Robot Design, Dynamics and Control
,
Springer International Publishing
,
Rennes, France
,
June 25–28
, pp.
77
85
.
17.
Reveles
,
D.
,
Pamanes
,
J. A.
, and
Wenger
,
P.
,
2016
, “
Trajectory Planning of Kinematically Redundant Parallel Manipulators by Using Multiple Working Modes
,”
Mech. Mach. Theory
,
98
, pp.
216
230
. 10.1016/j.mechmachtheory.2015.09.011
18.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
. 10.1109/70.56660
19.
Burdick
,
J. W.
,
1989
, “
On the Inverse Kinematics of Redundant Manipulators: Characterization of the Self-Motion Manifolds
,”
Proceedings of the 4th International Conference on Advanced Robotics
,
Columbus, OH
,
June 13–15
,
Springer
,
Berlin
, pp.
25
34
.
20.
Burdick
,
J. W.
,
1989
, “
On the Inverse Kinematics of Redundant Manipulators: Characterization of the Self-Motion Manifolds
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Scottsdale, AZ
,
May 14–19
,
IEEE
, pp.
264
270
.
21.
Borrel
,
P.
, and
Liegeois
,
A.
,
1986
, “
A Study of Multiple Manipulator Inverse Kinematic Solutions With Applications to Trajectory Planning and Workspace Determination
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 7–10
,
IEEE
, pp.
1180
1185
.
22.
Wenger
,
P.
,
1992
, “
A New General Formalism for the Kinematic Analysis of all Nonredundant Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Nice, France
,
May 12–14
,
IEEE Comput. Soc. Press
, pp.
442
447
.
23.
Ferrentino
,
E.
, and
Chiacchio
,
P.
,
2018
, “Redundancy Parametrization in Globally-Optimal Inverse Kinematics,”
Advances in Robot Kinematics 2018
,
J.
Lenarčič
and
V.
Parenti-Castelli
, eds.,
Springer International Publishing
,
Bologna
, pp.
47
55
.
24.
Pámanes
,
J. A.
,
Wenger
,
P.
, and
Zapata
,
J. L.
,
2002
, “Motion Planning of Redundant Manipulators for Specified Trajectory Tasks,”
Advances in Robot Kinematics 2002
,
J.
Lenarčič
and
F.
Thomas
, eds.,
Springer Netherlands
,
Caldes de Malavella
, pp.
203
212
.
25.
Wenger
,
P.
,
Chedmail
,
P.
, and
Reynier
,
F.
,
1993
, “
A Global Analysis of Following Trajectories by Redundant Manipulators in the Presence of Obstacles
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
May 2–6
,
IEEE Comput. Soc. Press
, pp.
901
906
.
26.
Burdick
,
J. W.
,
1990
, “Global Kinematics for Manipulator Planning and Control,”
Intelligent Control and Adaptive Systems
,
G.
Rodriguez
, ed.,
Philadelphia, PA
,
Nov. 1–3, 1989, SPIE
, pp.
57
68
.
27.
Liegeois
,
A.
,
1977
, “
Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms
,”
IEEE Trans. Syst. Man Cybern.
,
7
(
12
), pp.
868
871
. 10.1109/TSMC.1977.4309644
28.
Klein
,
C. A.
,
1985
, “
Use of Redundancy in the Design of Robotic Systems
,”
Robotics Research: The Second International Symposium
,
Kyoto, Japan
,
Aug. 20, 1984
,
MIT Press
, pp.
207
214
.
29.
Whitney
,
D.
,
1969
, “
Resolved Motion Rate Control of Manipulators and Human Prostheses
,”
IEEE Trans. Man Mach. Syst.
,
10
(
2
), pp.
47
53
. 10.1109/TMMS.1969.299896
30.
Hollerbach
,
J. M.
, and
Suh
,
K. C.
,
1987
, “
Redundancy Resolution of Manipulators Through Torque Optimization
,”
IEEE J. Rob. Autom.
,
3
(
4
), pp.
308
316
. 10.1109/JRA.1987.1087111
31.
Suh
,
K. C.
, and
Hollerbach
,
J. M.
,
1987
, “
Local Versus Global Torque Optimization of Redundant Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Raleigh, NC
,
Mar. 31–Apr. 3
,
IEEE
, pp.
619
624
.
32.
Kim
,
S.-W.
,
Park
,
K.-B.
, and
Lee
,
J.-J.
,
1994
, “
Redundancy Resolution of Robot Manipulators Using Optimal Kinematic Control
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
San Diego, CA
,
May 8–13
,
IEEE Comput. Soc. Press
, pp.
683
688
.
33.
Gotlih
,
K.
,
Troch
,
I.
, and
Jezernik
,
K.
,
1996
, “
Global Optimal Control of Redundant Robot
,”
Robotica
,
14
(
2
), pp.
131
140
. 10.1017/S0263574700019044
34.
Martin
,
D. P.
,
Baillieul
,
J.
, and
Hollerbach
,
J. M.
,
1989
, “
Resolution of Kinematic Redundancy Using Optimization Techniques
,”
IEEE Trans. Rob. Autom.
,
5
(
4
), pp.
529
533
. 10.1109/70.88067
35.
Chen
,
Y. C.
, and
O’Neil
,
K.
,
1998
, “
Stabilization of Pseudoinverse Acceleration Control of Redundant Mechanisms
,”
Robotics 98, Albuquerque, NM
,
Apr. 26–30
,
American Society of Civil Engineers
, pp.
293
299
.
36.
Chiacchio
,
P.
,
Chiaverini
,
S.
,
Sciavicco
,
L.
, and
Siciliano
,
B.
,
1991
, “
Closed-Loop Inverse Kinematics Schemes for Constrained Redundant Manipulators With Task Space Augmentation and Task Priority Strategy
,”
Int. J. Rob. Res.
,
10
(
4
), pp.
410
425
. 10.1177/027836499101000409
37.
Pashkevich
,
A. P.
,
Dolgui
,
A. B.
, and
Chumakov
,
O. A.
,
2004
, “
Multiobjective Optimization of Robot Motion for Laser Cutting Applications
,”
Int. J. Comput. Integr. Manuf.
,
17
(
2
), pp.
171
183
. 10.1080/0951192031000078202
You do not currently have access to this content.