Abstract

The craniotomy is a surgical task that is required to allow access to the patient's brain. It consists of using neurosurgical drills to open a path through the skull. The high risk resulting from human dexterous limit justifies the use of an accurate robotic system to perform craniotomy. The present work introduces the kinematic design of a mechanism for a robotic manipulator dedicated to craniotomy. Motion capture experiments have been carried out to measure the motion of a surgical drill during the execution of craniotomy on human cadavers. The results of the experiments are discussed. As this medical application requires a remote center of motion (RCM), a new type of 3-RRR spherical parallel mechanism (SPM) is proposed to manipulate the surgical drill. The novelty of this mechanism is the integration of a reconfigurable base that re-orients the first revolute joint of the RRR legs. A mechanical architecture concept is introduced to implement this reconfiguration. It is made of three pantographic linkages that manipulate the base of the SPM. The kinematics of the new mechanism is analyzed. The influence of this reconfigurable parameter is studied on two different aspects: the mechanism workspace and kinematic performances. Based on these kinematic data, the optimization of a mechanism is performed. The drill motion trajectories are used to evaluate the behavior of the optimized mechanism. It is finally compared to the classical SPM with a trihedral base, showing the contribution of the new reconfiguration variable on the mechanism dexterity.

References

1.
Bast
,
P.
,
Popovic
,
A.
,
Wu
,
T.
,
Heger
,
S.
,
Engelhardt
,
M.
,
Lauer
,
W.
,
Radermacher
,
K.
, and
Schmieder
,
K.
,
2006
, “
Robot-and Computer-Assisted Craniotomy: Resection Planning, Implant Modelling and Robot Safety
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
2
(
2
), pp.
168
178
. 10.1002/rcs.85
2.
Hsiao
,
M.-H.
, and
Kuo
,
C.-H.
,
2012
, “
A Review to the Powered Drilling Devices for Craniotomy
,”
ASME J. Med. Devices
,
6
(
1
), p.
017557
. 10.1115/1.4026735
3.
Bofinger
,
G.
, and
Wolfle
,
W.
,
1982
, “
Skull Trepanation Drill
,” U.S. Patent No. 4,319,577,
U.S. Patent and Trademark Office
,
Washington, DC
.
4.
Ahola
,
J. J.
, and
Harris
,
D. G.
,
1999
, “
Blade Guard for a Surgical Tool
,” U.S. Patent No. 6,001,115,
U.S. Patent and Trademark Office
,
Washington, DC
.
5.
Burghart
,
C.
,
Raczkowsky
,
J.
,
Rembold
,
U.
, and
Wörn
,
H.
,
1998
, “
Robot Cell for Craniofacial Surgery
,”
Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society
,
Aachen, Germany
,
Aug. 31–Sept. 4
, pp.
2506
2511
.
6.
Sim
,
C.
,
Ng
,
W. S.
,
Teo
,
M. Y.
,
Loh
,
Y. C.
, and
Yeo
,
T. T.
,
2001
, “
Image-Guided Manipulator Compliant Surgical Planning Methodology for Robotic Skull-Base Surgery
,”
International Workshop on Medical Imaging and Augmented Reality
,
Shatin, Hong Kong, China
,
June 10–12
, pp.
26
29
.
7.
Federspil
,
P. A.
,
Geisthoff
,
U. W.
,
Henrich
,
D.
, and
Plinkert
,
P. K.
,
2003
, “
Development of the First Force-Controlled Robot for Otoneurosurgery
,”
Laryngoscope
,
113
(
3
), pp.
465
471
. 10.1097/00005537-200303000-00014
8.
Korb
,
W.
,
Engel
,
D.
,
Boesecke
,
R.
,
Eggers
,
G.
,
Kotrikova
,
B.
,
Marmulla
,
R.
,
Raczkowsky
,
J.
,
Wörn
,
H.
,
Mühling
,
J.
, and
Hassfeld
,
S.
,
2003
, “
Development and First Patient Trial of a Surgical Robot for Complex Trajectory Milling
,”
Comput. Aided Surg.
,
8
(
5
), pp.
247
256
. 10.3109/10929080309146060
9.
Weimin
,
S.
,
Jason
,
G.
, and
Yanjun
,
S.
,
2006
, “
Using Tele-Robotic Skull Drill for Neurosurgical Applications
,”
Proceedings of the IEEE International Conference on Mechatronics and Automation
,
Luoyang, China
,
June 25–28
, pp.
334
338
.
10.
Tsai
,
T. C.
, and
Hsu
,
Y. L.
,
2007
, “
Development of a Parallel Surgical Robot With Automatic Bone Drilling Carriage for Stereotactic Neurosurgery
,”
Biomed. Eng.: Appl. Basis Commun.
,
19
(
4
), pp.
269
277
. 10.4015/S1016237207000355
11.
Matinfar
,
M.
,
Baird
,
C.
,
Batouli
,
A.
,
Clatterbuck
,
R.
, and
Kazanzides
,
P.
,
2007
, “
Robot-Assisted Skull Base Surgery
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Oct. 29–Nov. 2
, pp.
865
870
.
12.
Cunha-Cruz
,
V.
,
Follmann
,
A.
,
Popovic
,
A.
,
Bast
,
P.
,
Wu
,
T.
,
Heger
,
S.
,
Engelhardt
,
M.
,
Schmieder
,
K.
, and
Radermacher
,
K.
,
2010
, “
Robot- and Computer-Assisted Craniotomy (CRANIO): From Active Systems to Synergistic Man-Machine Interaction
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
3
), pp.
441
452
. 10.1243/09544119JEIM596
13.
Kobler
,
J. P.
,
Kotlarski
,
J.
,
Öltjen
,
J.
,
Baron
,
S.
, and
Ortmaier
,
T.
,
2012
, “
Design and Analysis of a Head-Mounted Parallel Kinematic Device for Skull Surgery
,”
Int. J. Comput. Assisted Radiol. Surg.
,
7
(
1
), pp.
137
149
. 10.1007/s11548-011-0619-8
14.
Li
,
G.-K.
,
Essomba
,
T.
,
Wu
,
C.-T.
, and
Lee
,
S.-T.
,
2016
, “
Kinematic Design and Optimization of a Novel Dual-Orthogonal Remote Center-of-Motion Mechanism for Craniotomy
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
6
), pp.
1129
1145
. 10.1177/0954406216636918
15.
Essomba
,
T.
,
Wu
,
C.-T.
,
Lee
,
S.-T.
, and
Kuo
,
C.-H.
,
2016
,
Robotics and Mechatronics, Mechanisms and Machine Science Series
, Vol.
37
,
Springer, Cham
,
France
, pp.
191
198
.
16.
Dehghani
,
M.
,
Moghadam
,
M. M.
, and
Torabi
,
P.
,
2018
, “
Analysis, Optimization and Prototyping of a Parallel RCM Mechanism of a Surgical Robot for Craniotomy Surgery
,”
Ind. Rob.: Int. J.
,
45
(
1
), pp.
78
88
. 10.1108/IR-08-2017-0144
17.
Essomba
,
T.
,
Laribi
,
M. A.
,
Hsu
,
Y.
, and
Zeghloul
,
S.
,
2018
, “
Kinematic Analysis of a 3-RRR Spherical Parallel Mechanism With Configurable Base
,”
Proceedings of the 4th IFToMM Symposium on Mechanism Design for Robotics
,
Udine, Italy
,
Sept. 11–14
, pp.
101
109
.
18.
Gosselin
,
C. M.
, and
Lavoie
,
E.
,
1993
, “
On the Kinematic Design of Spherical Three-Degree-of-Freedom Parallel Manipulators
,”
Int. J. Rob. Res.
,
12
(
4
), pp.
393
402
. 10.1177/027836499301200406
19.
Gosselin
,
C. M.
,
St-Pierre
,
E.
, and
Gagne
,
M.
,
1996
, “
On the Development of the Agile Eye: Mechanical Design, Control Issues and Experimentation
,”
IEEE Rob. Autom. Soc. Mag.
,
3
(
4
), pp.
29
37
. 10.1109/100.556480
20.
Cammarata
,
A.
, and
Sinatra
,
R.
,
2008
, “
The Elastodynamics of the 3-CRU Spherical Robot
,”
Second International Workshop on Fundamental Issues and Future Directions for Parallel Mechanisms and Manipulators
,
Montpellier, France
,
Sept.
,
N.
Andreff
,
O.
Company
,
M.
Gouttefarde
,
S.
Krut
, and
F.
Pierrot
, eds., pp.
159
165
.
21.
Li
,
R.
, and
Guo
,
Y.
,
2014
, “
Research on Dynamics and Simulation of 3-RRP Spherical Parallel Mechanism
,”
Third International Workshop on Fundamental Issues and Future Directions for Parallel Mechanisms and Manipulators
,
Tianjin, China
,
July
, pp.
7
8
.
22.
Huda
,
S.
,
Takeda
,
Y.
, and
Hanagasaki
,
S.
,
2011
, “
Kinematic Design of 3-URU Pure Rotational Parallel Mechanism to Perform Precise Motion Within a Large Workspace
,”
Meccanica
,
46
(
1
), pp.
89
100
.
23.
Herve
,
J. M.
, and
Karouia
,
M.
,
2002
, “
The Novel 3-RUU Wrist With no Idle Pair
,”
First International Workshop on Fundamental Issues and Future Directions for Parallel Mechanisms and Manipulators
,
Quebec, Canada
,
Oct.
,
C. M.
Gosselin
and
I.
Ebert-Uphoff
, eds., pp.
284
286
.
24.
Essomba
,
T.
,
Laribi
,
M. A.
,
Gazeau
,
J. P.
,
Poisson
,
G.
, and
Zeghloul
,
S.
,
2012
, “
Contribution to the Design of a Robotized Tele-Echography System
,”
Front. Mech. Eng.
,
7
(
2
), pp.
135
149
. 10.1007/s11465-012-0326-3
25.
Essomba
,
T.
,
Laribi
,
M. A.
,
Zeghloul
,
S.
, and
Poisson
,
G.
,
2016
, “
Optimal Synthesis of a Spherical Parallel Mechanism for Medical Application
,”
Robotica
,
34
(
3
), pp.
671
688
. 10.1017/S0263574714001805
26.
Luces
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2017
, “
A Review of Redundant Parallel Kinematic Mechanisms
,”
J. Intell. Rob. Syst.
,
86
(
2
), pp.
175
198
. 10.1007/s10846-016-0430-4
27.
Yim
,
M.
,
Zhang
,
Y.
, and
Duff
,
D.
,
2002
, “
Modular Robots
,”
IEEE Spectrum
,
39
(
2
), pp.
30
34
. 10.1109/6.981854
28.
Zhang
,
X.
, and
Zhang
,
X.
,
2016
, “
A Comparative Study of Planar 3-RRR and 4-RRR Mechanisms With Joint Clearances
,”
Rob. Comput. Integr. Manuf.
,
40
(
Aug.
), pp.
24
33
. 10.1016/j.rcim.2015.09.005
29.
Azulay
,
H.
,
Mahmoodi
,
M.
,
Zhao
,
R.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2014
, “
Comparative Analysis of a New 3-PPRS Parallel Kinematic Mechanism
,”
Rob. Comput. Integr. Manuf.
,
30
(
Aug.
), pp.
369
378
. 10.1016/j.rcim.2013.12.003
30.
Gan
,
D.
,
Dai
,
J. S.
, and
Sanevirane
,
L.
,
2013
, “
Reconfigurability and Unified Kinematics Modeling of a 3rTPS Metamorphic Parallel Mechanism With Perpendicular Constraint Screws
,”
Rob. Comput. Integr. Manuf.
,
29
(
4
), pp.
131
128
. 10.1016/j.rcim.2012.11.006
31.
Huang
,
G.
,
Guo
,
S.
,
Zhang
,
D.
,
Qu
,
H.
, and
Tang
,
H.
,
2018
, “
Kinematic Analysis and Multi-Objective Optimization of a New Reconfigurable Parallel Mechanism With High Stiffness
,”
Robotica
,
36
(
2
), pp.
187
203
. 10.1017/S0263574717000236
32.
Kang
,
X.
, and
Dai
,
J. S.
,
2019
, “
Relevance and Transferability for Parallel Mechanisms With Reconfigurable Platforms
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031012
. 10.1115/1.4042629
33.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimisation of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
. 10.1115/1.2912772
You do not currently have access to this content.