A micropump sucker employs a gas film micropump to produce a negative pressure adhesion in a suction cup. In this study, a piezo-driven flexible actuator was developed based on a bridge-type mechanism as a vibrator for such a micropump film. The model of the flexible actuator under an external load is built based on an elastic model, and the displacement, driving force, and work efficiency are formulated in terms of the external loads, materials, and geometric parameters. The finite element method was used to verify this analytical model. An increase in the compliance of flexure hinges was found to improve the performances of the flexible actuator. The Young’s modulus of materials decides force performances and the effects of external loads. Based on the elastic analysis, the proposed flexible mechanism, made of silicon, was optimized to realize optimal output displacement in a compact size and employed in the prototype of a micropump sucker with a weight of 1.3 g that produced a maximum negative pressure of 2.45 kPa. It can hold on a weight of 1.4 g. When the inlet of the proposed sucker is open, it has the maximum flow rate of 4 ml/min.

References

1.
Chu
,
B.
,
Jung
,
K.
,
Han
,
C.-S.
, and
Hong
,
D.
,
2010
, “
A Survey of Climbing Robots: Locomotion and Adhesion
,”
Int. J. Precis. Eng. Manuf.
,
11
(
4
), pp.
633
647
.
2.
Hillenbrand
,
C.
,
Schmidt
,
D.
, and
Berns
,
K.
,
2008
, “
CROMSCI: Development of a Climbing Robot With Negative Pressure Adhesion for Inspections
,”
Ind. Rob.
,
35
(
3
), pp.
228
237
.
3.
Wu
,
S.
,
Wu
,
L.
, and
Liu
,
T.
,
2011
, “
Design of a Sliding Wall Climbing Robot with a Novel Negative Adsorption Device
,”
2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)
,
Incheon, South Korea
,
Nov. 23–26
, pp.
97
100
.
4.
Amakawa
,
T.
,
Yamaguchi
,
T.
,
Yamada
,
Y.
, and
Nakamura
,
T.
,
2017
, “
Proposing an Adhesion Unit for a Traveling-Wave-Type, Omnidirectional Wall-Climbing Robot in Airplane Body Inspection Applications
,”
2017 IEEE International Conference on Mechatronics (ICM)
,
Churchill, Australia
,
Feb. 13–15
, pp.
178
183
.
5.
Oh
,
K. W.
, and
Ahn
,
C. H.
,
2006
, “
A Review of Microvalves
,”
J. Micromech. Microeng.
,
16
(
5
), pp.
R13
R39
.
6.
Nguyen
,
N.-T.
,
Huang
,
X.
, and
Chuan
,
T. K.
,
2002
, “
MEMS-Micropumps: A Review
,”
J. Fluids Eng.
,
124
(
2
), pp.
384
392
.
7.
Kawun
,
P.
,
Leahy
,
S.
, and
Lai
,
Y.
,
2016
, “
A Thin PDMS Nozzle/Diffuser Micropump for Biomedical Applications
,”
Sens. Actuators A: Phys.
,
249
, pp.
149
154
.
8.
Gerlach
,
T.
, and
Wurmus
,
H.
,
1995
, “
Working Principle and Performance of the Dynamic Micropump
,”
Sens. Actuators A: Phys.
,
50
(
1–2
), pp.
135
140
.
9.
Zhou
,
W.-M.
,
Li
,
W.-J.
,
Hong
,
S.-Y.
,
Jin
,
J.
, and
Yin
,
S.-Y.
,
2017
, “
Stoney Formula for Piezoelectric Film/Elastic Substrate System
,”
Chin. Phys. B
,
26
(
3
), p.
037701
.
10.
Chen
,
S.
,
Lu
,
S.
,
Liu
,
Y.
,
Wang
,
J.
,
Tian
,
X.
,
Liu
,
G.
, and
Yang
,
Z.
,
2016
, “
A Normally-Closed Piezoelectric Micro-Valve With Flexible Stopper
,”
AIP Adv.
,
6
(
4
), p.
045112
.
11.
Xu
,
Q.
,
2013
, “
Design, Testing and Precision Control of a Novel Long-Stroke Flexure Micropositioning System
,”
Mech. Mach. Theory
,
70
, pp.
209
224
.
12.
Lai
,
L.-J.
, and
Zhu
,
Z.-N.
,
2017
, “
Design, Modeling and Testing of a Novel Flexure-Based Displacement Amplification Mechanism
,”
Sens. Actuators A: Phys.
,
266
, pp.
122
129
.
13.
Nam
,
J.
,
Kim
,
Y.
, and
Jang
,
G.
,
2015
, “
Resonant Piezoelectric Vibrator With High Displacement at Haptic Frequency Devices
,”
IEEE/ASME Trans. Mechatron.
,
21
(
1
), pp.
394
401
.
14.
Wang
,
X. Y.
,
Ma
,
Y. T.
,
Yan
,
G. Y.
, and
Feng
,
Z. H.
,
2014
, “
A Compact and High Flow-Rate Piezoelectric Micropump With a Folded Vibrator
,”
Smart Mater. Struct.
,
23
(
11
), p.
115005
.
15.
Pan
,
Q. S.
,
He
,
L. G.
,
Huang
,
F. S.
,
Wang
,
X. Y.
, and
Feng
,
Z. H.
,
2015
, “
Piezoelectric Micropump Using Dual-Frequency Drive
,”
Sens. Actuators A: Phys.
,
229
, pp.
86
93
.
16.
Pang
,
J.
,
Liu
,
P.
,
Yan
,
P.
, and
Zhang
,
Z.
,
2016
, “
Modeling and Experimental Testing of a Composite Bridge Type Amplifier Based Nano-Positioner
,”
2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)
,
Chongqing, China
,
July 18–22
, pp.
25
30
.
17.
Liu
,
P.
, and
Yan
,
P.
,
2016
, “
A New Model Analysis Approach for Bridge-Type Amplifiers Supporting Nano-Stage Design
,”
Mech. Mach. Theory
,
99
, pp.
176
188
.
18.
Pokines
,
B. J.
, and
Garcia
,
E.
,
1998
, “
A Smart Material Microamplification Mechanism Fabricated Using LIGA
,”
Smart Mater. Struct.
,
7
(
1
), pp.
105
112
.
19.
Wang
,
F.
,
Liang
,
C.
,
Tian
,
Y.
,
Zhao
,
X.
, and
Zhang
,
D.
,
2016
, “
Design and Control of a Compliant Microgripper With a Large Amplification Ratio for High-Speed Micro Manipulation
,”
IEEE/ASME Trans. Mechatron.
,
21
(
3
), pp.
1262
1271
.
20.
Wang
,
F.
,
Liang
,
C.
,
Tian
,
Y.
,
Zhao
,
X.
, and
Zhang
,
D.
,
2015
, “
Design of a Piezoelectric-Actuated Microgripper With a Three-Stage Flexure-Based Amplification
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2205
2213
.
21.
Liang
,
C.
,
Wang
,
F.
,
Tian
,
Y.
,
Zhao
,
X.
, and
Zhang
,
D.
,
2017
, “
Development of a High Speed and Precision Wire Clamp With Both Position and Force Regulations
,”
Rob. Comput.-Integr. Manuf.
,
44
, pp.
208
217
.
22.
Kim
,
J.-J.
,
Choi
,
Y.-M.
,
Ahn
,
D.
,
Hwang
,
B.
,
Gweon
,
D.-G.
, and
Jeong
,
J.
,
2012
, “
A Millimeter-Range Flexure-Based Nano-Positioning Stage Using a Self-Guided Displacement Amplification Mechanism
,”
Mech. Mach. Theory
,
50
, pp.
109
120
.
23.
Park
,
S. K.
, and
Gao
,
X.-L.
,
2006
, “
Bernoulli–Euler Beam Model Based on a Modified Couple Stress Theory
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2355
2359
.
24.
Wei
,
H.
,
Shirinzadeh
,
B.
,
Li
,
W.
,
Clark
,
L.
,
Pinskier
,
J.
, and
Wang
,
Y.
,
2017
, “
Development of Piezo-Driven Compliant Bridge Mechanisms: General Analytical Equations and Optimization of Displacement Amplification
,”
Micromachines
,
8
(
8
), p.
238
.
25.
Luo
,
Y.
,
Liu
,
W.
, and
Wu
,
L.
,
2015
, “
Analysis of the Displacement of Lumped Compliant Parallel-Guiding Mechanism Considering Parasitic Rotation and Deflection on the Guiding Plate and Rigid Beams
,”
Mech. Mach. Theory
,
91
, pp.
50
68
.
26.
Ma
,
H.-W.
,
Yao
,
S.-M.
,
Wang
,
L.-Q.
, and
Zhong
,
Z.
,
2006
, “
Analysis of the Displacement Amplification Ratio of Bridge-Type Flexure Hinge
,”
Sens. Actuators A: Phys.
,
132
(
2
), pp.
730
736
.
27.
Qi
,
K.
,
Xiang
,
Y.
,
Fang
,
C.
,
Zhang
,
Y.
, and
Yu
,
C.
,
2015
, “
Analysis of the Displacement Amplification Ratio of Bridge-Type Mechanism
,”
Mech. Mach. Theory
,
87
, pp.
45
56
.
28.
Ling
,
M.
,
Cao
,
J.
,
Jiang
,
Z.
, and
Lin
,
J.
,
2016
, “
Theoretical Modeling of Attenuated Displacement Amplification for Multistage Compliant Mechanism and Its Application
,”
Sens. Actuators A: Phys.
,
249
, pp.
15
22
.
29.
Choi
,
K.-B.
,
Lee
,
J. J.
,
Kim
,
G. H.
,
Lim
,
H. J.
, and
Kwon
,
S. G.
,
2018
, “
Amplification Ratio Analysis of a Bridge-Type Mechanical Amplification Mechanism Based on a Fully Compliant Model
,”
Mech. Mach. Theory
,
121
, pp.
355
372
.
30.
Chen
,
F.
,
Du
,
Z.
,
Yang
,
M.
,
Gao
,
F.
,
Dong
,
W.
, and
Zhang
,
D.
,
2018
, “
Design and Analysis of a Three-Dimensional Bridge-Type Mechanism Based on the Stiffness Distribution
,”
Prec. Eng.
,
51
, pp.
48
58
.
31.
Lobontiu
,
N.
, and
Garcia
,
E.
,
2003
, “
Analytical Model of Displacement Amplification and Stiffness Optimization for a Class of Flexure-Based Compliant Mechanisms
,”
Comput. Struct.
,
81
(
32
), pp.
2797
2810
.
32.
Dong
,
W.
,
Chen
,
F.
,
Yang
,
M.
,
Du
,
Z.
,
Tang
,
J.
, and
Zhang
,
D.
,
2017
, “
Development of a Highly Efficient Bridge-Type Mechanism Based on Negative Stiffness
,”
Smart Mater. Struct.
,
26
(
9
), p.
095053
.
33.
Mo
,
C.
,
Wright
,
R.
,
Slaughter
,
W. S.
, and
Clark
,
W. W.
,
2006
, “
Behaviour of a Unimorph Circular Piezoelectric Actuator
,”
Smart Mater. Struct.
,
15
(
4
), pp.
1094
1102
.
34.
Wang
,
D. H.
, and
Huo
,
J.
,
2010
, “
Modeling and Testing of the Static Deflections of Circular Piezoelectric Unimorph Actuators
,”
J. Intell. Mater. Syst. Struct.
,
21
(
16
), pp.
1603
1616
.
35.
Liu
,
J.
,
Guan
,
E.
,
Li
,
P.
,
Wang
,
F.
,
Liang
,
C.
, and
Zhao
,
Y.
,
2017
, “
Deflection Behavior of a Piezo-Driven Flexible Actuator for Vacuum Micropumps
,”
Sens. Actuators A: Phys.
,
267
, pp.
30
41
.
36.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.