Abstract

Zero-stiffness compliant mechanisms (ZSCM) can provide constant or zero force over a range of motion without the issues caused by the inherent stiffness of compliant mechanisms (CM). The large-deflection curved beams in ZSCM enhance the mechanism’s performance but pose significant modeling challenges. As an effective method for modeling curved beams, chained pseudo-rigid-body model (CPRBM) can be an intuitive method to implement in ZSCM synthesis. However, its difficulty in solving reaction forces limits its usability in the frequently-used force-based ZSCM synthesis. To address the problem, this article proposes an energy-based method for CPRBM-based ZSCM synthesis, without calculating the reaction force. This method synthesizes the mechanisms with zero-stiffness characteristics by optimizing the energy recorded from the analysis based on the principle of minimum potential energy. Two optimization models based on energy characteristic are developed for constant force CM (CFCM) and statically balanced CM (SBCM), respectively. Synthesis cases and experimental studies are used to verify the proposed method. The results demonstrate that the synthesized ZSCM have good performances and the proposed method can be a user-friendly tool for ZSCM synthesis.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley and Sons
,
Hoboken, NJ
.
2.
Wu
,
J.
,
Wang
,
L.
, and
You
,
Z.
,
2010
, “
A New Method for Optimum Design of Parallel Manipulator Based on Kinematics and Dynamics
,”
Nonlinear Dyn.
,
61
, pp.
717
727
.
3.
Wu
,
J.
,
Gao
,
Y.
,
Zhang
,
B.
, and
Wang
,
L.
,
2017
, “
Workspace and Dynamic Performance Evaluation of the Parallel Manipulators in a Spray-Painting Equipment
,”
Rob. Comput. Integrated Manufact.
,
44
, pp.
199
207
.
4.
Gallego Sanchez
,
J.
,
2013
, “
Statically Balanced Compliant Mechanisms: Theory and Synthesis
,” Dissertation,
Delft University of Technology, NEO
,
Delft
.
5.
Tolou
,
N.
,
Sanchez
,
J. G.
, and
Herder
,
J.
,
2010
, “
Statically Balanced Compliant Micro Mechanisms (sb-mems): A Breakthrough in Precision Engineering
,”
Mikroniek vakblad voor precisie technologie
,
6
, pp.
20
25
.
6.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory
,
119
, pp.
1
21
.
7.
Gallego
,
J. A.
, and
Herder
,
J. L.
,
2010
, “
Criteria for the Static Balancing of Compliant Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Aug. 15–18
, Vol.
44106, pp.
465
473
.
8.
Schenk
,
M.
, and
Guest
,
S. D.
,
2014
, “
On Zero Stiffness
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
228
(
10
), pp.
1701
1714
.
9.
Chen
,
R.
,
Liu
,
L.
,
Wang
,
W.
,
Liu
,
Y.
,
Wu
,
K.
,
Zhou
,
L.
,
Yuan
,
Z.
, and
Zheng
,
G.
,
2024
, “
Design, Modeling and Analysis of Large-Stroke Compliant Constant Torque Mechanisms
,”
Mech. Mach. Theory
,
202
, p.
105760
.
10.
Lin
,
Q.
,
Zhou
,
J.
,
Wang
,
K.
,
Cai
,
C.
, and
Wang
,
Q.
,
2024
, “
Enhanced Low-Frequency Band Gap of Nonlinear Quasi-Zro-Stiffness Metamaterial by Lowering Stiffness Coupling
,”
Nonlinear Dyn.
,
1
20
.
11.
Pham
,
H.-T.
, and
Wang
,
D.-A.
,
2011
, “
A Constant-fForce Bistable Mechanism for Force Regulation and Overload Protection
,”
Mech. Mach. Theory
,
46
(
7
), pp.
899
909
.
12.
Wei
,
Y.
, and
Xu
,
Q.
,
2022
, “
Design of a New Passive End-Effector Based on Constant-Force Mechanism for Robotic Polishing
,”
Rob. Comput.-Integrat. Manufact.
,
74
, p.
102278
.
13.
Wang
,
J.-Y.
, and
Lan
,
C.-C.
,
2014
, “
A Constant-fForce Compliant Gripper for Handling Objects of Various Sizes
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071008
.
14.
Xu
,
Q.
,
2018
, “
Design and Development of a Flexure-Based Compact Constant-Force Robotic Gripper
,”
Micromach. Biol. Micromanipulation
, pp.
145
168
.
15.
Liang
,
H.
,
Hao
,
G.
,
Olszewski
,
O. Z.
, and
Pakrashi
,
V.
,
2022
, “
Ultra-Low Wide Bandwidth Vibrational Energy Harvesting Using a Statically Balanced Compliant Mechanism
,”
Int. J. Mech. Sci.
,
219
, p.
107130
.
16.
Xu
,
L.
, and
Xiang
,
Z.
,
2022
, “
Compliant Quasi-Zero Stiffness Device for Vibration Energy Harvesting and Isolation
,”
Sens. Actuators, A: Phys.
,
347
, p.
113964
.
17.
Lassooij
,
J.
,
Tolou
,
N.
,
Tortora
,
G.
,
Caccavaro
,
S.
,
Menciassi
,
A.
, and
Herder
,
J.
,
2012
, “
A Statically Balanced and Bi-stable Compliant End Effector Combined With a Laparoscopic 2dof Robotic Arm
,”
Mech. Sci.
,
3
(
2
), pp.
85
93
.
18.
Chandrasekaran
,
K.
,
Somayaji
,
A.
, and
Thondiyath
,
A.
,
2018
, “
Realization of a Statically Balanced Compliant Planar Remote Center of Motion Mechanism for Robotic Surgery
,”
Proceedings of the 2018 Design of Medical Devices Conference
,
Minneapolis, MN
,
Apr. 9–12
, Vol.
40789
, —PUBNAMEAmerican Society of Mechanical Engineers, p.
V001T07A011
.
19.
Ma
,
F.
,
Chen
,
G.
, and
Wang
,
H.
,
2020
, “
Large-Sroke Constant-Force Mechanisms Utilizing Second Buckling Mode of Flexible Beams: Evaluation Metrics and Design Approach
,”
ASME J. Mech. Des.
,
142
(
10
), p.
103303
.
20.
Xu
,
Q.
,
2017
, “
Design of a Large-Stroke Bistable Mechanism for the Application in Constant-Force Micropositioning Stage
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011006
.
21.
Zhang
,
Q.
,
Guo
,
D.
, and
Hu
,
G.
,
2021
, “
Tailored Mechanical Metamaterials With Programmable Quasi-Zero-Stiffness Features for Full-Band Vibration Isolation
,”
Adv. Funct. Mater.
,
31
(
33
), p.
2101428
.
22.
de Lange
,
D. J.
,
Langelaar
,
M.
, and
Herder
,
J. L.
,
2008
, “
Towards the Design of a Statically Balanced Compliant Laparoscopic Grasper Using Topology Optimization
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Brooklyn, NY
,
Aug. 3–6
, Vol.
43260, pp.
293
305
.
23.
Bilancia
,
P.
,
Smith
,
S. P.
,
Berselli
,
G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2020
, “
Zero Torque Compliant Mechanisms Employing Pre-Buckled Beams
,”
ASME J. Mech. Des.
,
142
(
11
), p.
113301
.
24.
Rosenberg
,
E. J.
,
Radaelli
,
G.
, and
Herder
,
J. L.
,
2010
, “
An Energy Approach to a 2dof Compliant Parallel Mechanism With Self-Guiding Statically-Balanced Straight-Line Behavior
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Aug. 15–18
, Vol.
44106
, pp.
455
464
.
25.
Nobaveh
,
A. A.
,
Herder
,
J. L.
, and
Radaelli
,
G.
,
2024
, “
Compliant Variable Negative to Zero to Positive Stiffness Twisting Elements
,”
Mech. Mach. Theory
,
196
, p.
105607
.
26.
Radaelli
,
G.
, and
Herder
,
J.
,
2016
, “
A Monolithic Compliant Large-Range Gravity Balancer
,”
Mech. Mach. Theory
,
102
, pp.
55
67
.
27.
Radaelli
,
G.
, and
Herder
,
J.
,
2017
, “
A Potential Energy Field (pef) Approach to the Design of a Compliant Self-Guiding Statically-Balanced Straight-Line Mechanism
,”
Mech. Mach. Theory
,
114
, pp.
141
155
.
28.
Berntsen
,
L.
,
Gosenshuis
,
D. H.
, and
Herder
,
J. L.
,
2014
, “
Design of a Compliant Monolithic Internally Statically Balanced Four-Bar Mechanism
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, Vol.
46360
,
American Society of Mechanical Engineers
, p.
V05AT08A040
.
29.
Ling
,
J.
,
Ye
,
T.
,
Feng
,
Z.
,
Zhu
,
Y.
,
Li
,
Y.
, and
Xiao
,
X.
,
2022
, “
A Survey on Synthesis of Compliant Constant Force/Torque Mechanisms
,”
Mech. Mach. Theory
,
176
, p.
104970
.
30.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
31.
Chen
,
G.
,
Ma
,
F.
,
Hao
,
G.
, and
Zhu
,
W.
,
2019
, “
Modeling Large Deflections of Initially Curved Beams in Compliant Mechanisms Using Chained Beam Constraint Model
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011002
.
32.
Lan
,
C.-C.
, and
Lee
,
K.-M.
,
2005
, “
Generalized Shooting Method for Analyzing Compliant Mechanisms With Curved Members
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
765
775
.
33.
Liu
,
Y.
,
Zhang
,
Y.
, and
Xu
,
Q.
,
2016
, “
Design and Control of a Novel Compliant Constant-Force Gripper Based on Buckled Fixed-Guided Beams
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
476
486
.
34.
Bilancia
,
P.
, and
Berselli
,
G.
,
2020
, “
Design and Testing of a Monolithic Compliant Constant Force Mechanism
,”
Smart Mater. Struct.
,
29
(
4
), p.
044001
.
35.
Cheng
,
Z.
,
Savarimuthu
,
T. R.
,
Foong
,
S.
, and
Tan
,
U.-X.
,
2023
, “
Design of Adjustable Constant Force/Torque Mechanisms for Medical Applications
,”
J. Mech. Rob.
,
15
(
2
), p.
025001
.
36.
Pham
,
H.-T.
, and
Nguyen
,
V.-K.
,
2024
, “
Design of a Novel Large-Stroke Compliant Constant-Torque Mechanism Based on Chained Beam-Constraint Model
,”
ASME J. Mech. Rob.
,
16
(
8
), p.
081006
.
37.
Hou
,
C.-W.
, and
Lan
,
C.-C.
,
2013
, “
Functional Joint Mechanisms With Constant-Torque Outputs
,”
Mech. Mach. Theory
,
62
, pp.
166
181
.
38.
Zhang
,
Q.
,
Yan
,
P.
, and
Wang
,
H.
,
2022
, “
A Curved-Beam Based Quasi-Constant Force Mechanism Supporting Large Range and Force-Sensitive Robotic Manipulation
,”
Mech. Mach. Theory
,
172
, p.
104799
.
39.
Miao
,
Y.
, and
Zheng
,
J.
,
2020
, “
Optimization Design of Compliant Constant-Force Mechanism for Apple Picking Actuator
,”
Comput. Electron. Agric.
,
170
, p.
105232
.
40.
Saggere
,
L.
, and
Kota
,
S.
,
2001
, “
Synthesis of Planar, Compliant Four-Bar Mechanisms for Compliant-Segment Motion Generation
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
535
541
.
41.
Xu
,
H.
,
Zhang
,
X.
,
Wang
,
R.
,
Zhang
,
H.
, and
Liang
,
J.
,
2023
, “
Design of an sma-Driven Compliant Constant-Force Gripper Based on a Modified Chained Pseudo-Rigid-Body Model
,”
Mech. Mach. Theory
,
187
, p.
105371
.
42.
Jin
,
M.
,
Ynchausti
,
C.
, and
Howell
,
L. L.
,
2023
, “
Zero-Curvature Deformation Properties and 3r Pseudo-Rigid-Body Model of Large-Deflection Euler Spiral Beams
,”
Mech. Mach. Theory
,
183
, p.
105261
.
43.
Jin
,
M.
,
Yang
,
Z.
,
Ynchausti
,
C.
,
Zhu
,
B.
,
Zhang
,
X.
, and
Howell
,
L. L.
,
2020
, “
Large-Deflection Analysis of General Beams in Contact-Aided Compliant Mechanisms Using Chained Pseudo-Rigid-Body Model
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031005
.
You do not currently have access to this content.