Abstract

This article proposes an evolutionary design method for metamorphic mechanisms inspired by gene deduction. First, the correlations between biological evolution and mechanical evolution, biological systems and mechanical systems, and genes and mechanisms are revealed. There are many similarities between biology and mechanism. Biological principles can be applied to the study and design of the mechanisms to adapt well to tasks and environments. The correlation between genetic operation and mechanical design is developed. The selection operator, recombination operator, and mutation operator of the mechanisms are deduced by inspiring genes. To verify the rationality of these operators, they are used to construct 5R (revolute joints) overconstrained closed-loop linkage, 6R metamorphic closed-loop linkage, 7R deployable closed-loop linkage, and 2RP (prismatic joint) RR metamorphic parallel mechanism (MPM). The mobilities of these mechanisms are analyzed via the atlas method. Finally, the evolutionary design method of MPMs is introduced and used to design the mechanisms with 2R1T (two rotation one translation) and 1R2T modes, which verify the effectiveness of the method. The proposed evolutionary design method provides a new theoretical tool for the design of metamorphic single-loop and parallel mechanisms.

References

1.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
2.
Aimedee
,
F.
,
Gogu
,
G.
,
Dai
,
J. S.
,
Bouzgarrou
,
C.
, and
Bouton
,
N.
,
2016
, “
Systematization of Morphing in Reconfigurable Mechanisms
,”
Mech. Mach. Theory
,
96
, pp.
215
224
.
3.
Tian
,
C.
, and
Zhang
,
D.
,
2020
, “
A New Family of Generalized Parallel Manipulators With Configurable Moving Platforms
,”
Mech. Mach. Theory
,
153
, p.
103997
.
4.
Kong
,
X.
, and
Jin
,
Y.
,
2016
, “
Type Synthesis of 3-DOF Multi-mode Translational/Spherical Parallel Mechanisms With Lockable Joints
,”
Mech. Mach. Theory
,
96
, pp.
323
333
.
5.
Zeng
,
Q.
, and
Ehmann
,
K. F.
,
2014
, “
Design of Parallel Hybrid-Loop Manipulators With Kinematotropic Property and Deployability
,”
Mech. Mach. Theory
,
71
, pp.
1
26
.
6.
Xu
,
Y.
,
Liang
,
Z.
, and
Liu
,
J.
,
2020
, “
A New Metamorphic Parallel Leg Mechanism With Reconfigurable Moving Platform
,”
Math. Probl. Eng.
,
2020
, pp.
1
11
.
7.
Huang
,
G.
,
Zhang
,
D.
,
Zou
,
Q.
,
Ye
,
W.
, and
Kong
,
L.
,
2023
, “
Analysis and Design Method of a Class of Reconfigurable Parallel Mechanisms by Using Reconfigurable Platform
,”
Mech. Mach. Theory
,
181
, p.
105215
.
8.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
361
(
6
), pp.
743
761
.
9.
López-Custodio
,
P. C.
, and
Dai
,
J. S.
,
2019
, “
Design of a Variable-Mobility Linkage Using the Bohemian Dome
,”
ASME J. Mech. Des.
,
141
(
9
), p.
092303
.
10.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “Constraint Singularities as c-Space Singularities,”
Advances in Robot Kinematics
,
J.
Lenarčič
, and
F.
Thomas
, eds,
Springer Netherlands
,
Dordrecht
, pp.
183
192
.
11.
Chang
,
B.
,
2014
, “
Type Synthesis of Metamorphic Mechanism Based on Variable Constraint Screw Theory
,”
J. Mech. Eng.
,
501
(
5
), p.
17
(in Chinese).
12.
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Geometric Constraints and Motion Branch Variations for Reconfiguration of Single-Loop Linkages With Mobility One
,”
Mech. Mach. Theory
,
106
, pp.
16
29
.
13.
Deng
,
Z.
,
Zhang
,
Y.
, and
Yan
,
S.
,
2023
, “
Type Synthesis of Metamorphic and Axisymmetric Parallel Mechanisms Using Singularity for Deployment and Latch
,”
Mech. Mach. Theory
,
189
, p.
105441
.
14.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
ASME J. Mech. Des.
,
1321
(
12
), p.
121001
.
15.
Ye
,
W.
,
Chai
,
X.
, and
Zhang
,
K.
,
2020
, “
Kinematic Modeling and Optimization of a New Reconfigurable Parallel Mechanism
,”
Mech. Mach. Theory
,
149
, p.
103850
.
16.
Gan
,
D.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “
Unified Kinematics and Optimal Design of a 3rRPS Metamorphic Parallel Mechanism With a Reconfigurable Revolute Joint
,”
Mech. Mach. Theory
,
96
, pp.
239
254
.
17.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2013
, “
Reconfigurability and Unified Kinematics Modeling of a 3rTPS Metamorphic Parallel Mechanism With Perpendicular Constraint Screws
,”
Rob. Comput. Integr. Manuf.
,
291
(
4
), pp.
121
128
.
18.
Pu
,
J.
,
Duanling
,
L.
,
Haiyuan
,
L.
,
Xiaojie
,
Y.
, and
Zhenghao
,
G. E.
,
2020
, “
Structural Design and Configuration Analysis of Parallel Mechanism With Metamorphic Joint
,”
J. Mech. Eng.
,
56
(
19
), p.
92
(in Chinese).
19.
Jia
,
P.
,
Li
,
D.
, and
Li
,
J.
,
2019
, “Configuration Change and Mobility Analysis of a Novel Metamorphic Parallel Mechanism Constructed With (rA) Joint,”
Intelligent Robotics and Applications
,
H.
Yu
,
J.
Liu
,
L.
Liu
,
Z.
Ju
,
Y.
Liu
, and
D.
Zhou
, eds,
Springer International Publishing
,
Cham
, pp.
738
749
.
20.
Wang
,
R.
,
Kang
,
X.
, and
Dai
,
J. S.
,
2021
, “
A Novel Reconfigurable Spherical Joint Based on Linear Independence of Screws and Its Resultant Metamorphic Mechanisms
,”
Mech. Mach. Theory
,
164
, p.
104351
.
21.
Wei
,
J.
, and
Dai
,
J. S.
,
2019
, “
Reconfiguration-Aimed and Manifold-Operation Based Type Synthesis of Metamorphic Parallel Mechanisms With Motion Between 1R2T and 2R1T
,”
Mech. Mach. Theory
,
139
, pp.
66
80
.
22.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2014
, “
A New Family of Reconfigurable Parallel Mechanisms With Diamond Kinematotropic Chain
,”
Mech. Mach. Theory
,
74
, pp.
1
9
.
23.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2016
, “
Mobility Variation of a Family of Metamorphic Parallel Mechanisms With Reconfigurable Hybrid Limbs
,”
Rob. Comput. Integr. Manuf.
,
41
, pp.
145
162
.
24.
Jia
,
G.
,
Li
,
B.
,
Huang
,
H.
, and
Zhang
,
D.
,
2020
, “
Type Synthesis of Metamorphic Mechanisms With Scissor-Like Linkage Based on Different Kinds of Connecting Pairs
,”
Mech. Mach. Theory
,
151
, p.
103848
.
25.
Jia
,
G.
,
Huang
,
H.
,
Wang
,
S.
, and
Li
,
B.
,
2021
, “
Type Synthesis of Plane-Symmetric Deployable Grasping Parallel Mechanisms Using Constraint Force Parallelogram Law
,”
Mech. Mach. Theory
,
161
, p.
104330
.
26.
Jia
,
G.
,
Huang
,
H.
,
Li
,
B.
,
Wu
,
Y.
,
Cao
,
Q.
, and
Guo
,
H.
,
2018
, “
Synthesis of a Novel Type of Metamorphic Mechanism Module for Large Scale Deployable Grasping Manipulators
,”
Mech. Mach. Theory
,
128
, pp.
544
559
.
27.
Sun
,
X.
,
Li
,
R.
,
Xun
,
Z.
,
Kong
,
X.
, and
Yao
,
Y.-A.
,
2021
, “
A Multiple-Mode Mechanism Composed of Four Antiparallelogram Units and Four Revolute Joints
,”
Mech. Mach. Theory
,
155
, p.
104106
.
28.
Tian
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Qu
,
H.
,
2017
, “
A Class of Reconfigurable Parallel Mechanisms With Five-Bar Metamorphic Linkage
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
231
(
11
), pp.
2089
2099
.
29.
Kong
,
X.
,
Gosselin
,
C. M.
, and
Richard
,
P.-L.
,
2006
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
595
601
.
30.
Li
,
S.
,
2010
, “
Structure of Metamorphic Mechanisms Based on Augmented Assur Groups
,”
J. Mech. Eng.
,
46
(
13
), p.
22
(in Chinese).
31.
Gogu
,
G.
,
2011
, “
Maximally Regular T2R1-Type Parallel Manipulators With Bifurcated Spatial Motion
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011010
.
32.
Gogu
,
G.
,
2012
, “
T2R1-Type Parallel Manipulators With Bifurcated Planar-Spatial Motion
,”
Eur. J. Mech. A/Solids
,
33
, pp.
1
11
.
33.
Pfurner
,
M.
,
2018
, “
Synthesis and Motion Analysis of a Single-Loop 8R-Chain
,”
2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, The Netherlands
,
June 20–22
.
34.
Carbonari
,
L.
,
Costa
,
D.
,
Palmieri
,
G.
, and
Palpacelli
,
M.-C.
,
2019
, “
Reconfigurability Analysis of a Class of Parallel Kinematics Machines
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
021002
.
35.
Li
,
S.
, and
Dai
,
J. S.
,
2012
, “
Structure Synthesis of Single-Driven Metamorphic Mechanisms Based on the Augmented Assur Groups
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031004
.
36.
Li
,
S.
,
Wang
,
H.
,
Meng
,
Q.
, and
Dai
,
J. S.
,
2016
, “
Task-Based Structure Synthesis of Source Metamorphic Mechanisms and Constrained Forms of Metamorphic Joints
,”
Mech. Mach. Theory
,
96
, pp.
334
345
.
37.
Xu
,
K.
,
Li
,
L.
,
Bai
,
S.
,
Yang
,
Q.
, and
Ding
,
X.
,
2017
, “
Design and Analysis of a Metamorphic Mechanism Cell for Multistage Orderly Deployable/Retractable Mechanism
,”
Mech. Mach. Theory
,
111
, pp.
85
98
.
38.
Tian
,
H.
,
Ma
,
H.
, and
Ma
,
K.
,
2018
, “
Method for Configuration Synthesis of Metamorphic Mechanisms Based on Functional Analyses
,”
Mech. Mach. Theory
,
123
, pp.
27
39
.
39.
Yang
,
Q.
,
Hao
,
G.
,
Li
,
S.
,
Wang
,
H.
, and
Li
,
H.
,
2020
, “
Practical Structural Design Approach of Multiconfiguration Planar Single-Loop Metamorphic Mechanism With a Single Actuator
,”
Chin. J. Mech. Eng.
,
33
(
1
), p.
77
(in Chinese).
40.
Chu
,
H.
,
Zhou
,
Y.
, and
Yao
,
J.
,
2023
, “
Type Synthesis of Metamorphic Parallel Robots Based on the Serial-Chain Database
,”
Mech. Mach. Theory
,
181
, p.
105207
.
41.
Li
,
Q.
, and
Herve
,
J. M.
,
2009
, “
Parallel Mechanisms With Bifurcation of Schoenflies Motion
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
158
164
.
42.
Ma
,
X.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2018
, “
Novel Spherical-Planar and Bennett-Spherical 6R Metamorphic Linkages With Reconfigurable Motion Branches
,”
Mech. Mach. Theory
,
128
, pp.
628
647
.
43.
Chai
,
X.
, and
Dai
,
J. S.
,
2019
, “
Three Novel Symmetric Waldron–Bricard Metamorphic and Reconfigurable Mechanisms and Their Isomerization
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051011
.
44.
Chai
,
X.
,
Kang
,
X.
,
Gan
,
D.
,
Yu
,
H.
, and
Dai
,
J. S.
,
2021
, “
Six Novel 6R Metamorphic Mechanisms Induced From Three-Series-Connected Bennett Linkages That Vary among Classical Linkages
,”
Mech. Mach. Theory
,
156
, p.
104133
.
45.
Song
,
Y.
,
Ma
,
X.
, and
Dai
,
J. S.
,
2019
, “
A Novel 6R Metamorphic Mechanism With Eight Motion Branches and Multiple Furcation Points
,”
Mech. Mach. Theory
,
142
, p.
103598
.
46.
Liu
,
K.
,
Yu
,
J.
, and
Kong
,
X.
,
2021
, “
Synthesis of Multi-mode Single-Loop Bennett-Based Mechanisms Using Factorization of Motion Polynomials
,”
Mech. Mach. Theory
,
155
, p.
104110
.
47.
Liu
,
K.
,
Yu
,
J.
, and
Kong
,
X.
,
2022
, “
Structure Synthesis and Reconfiguration Analysis of Variable-Degree-of-Freedom Single-Loop Mechanisms With Prismatic Joints Using Dual Quaternions
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021009
.
48.
Kang
,
X.
,
Lei
,
H.
, and
Li
,
B.
,
2022
, “
Multiple Bifurcated Reconfiguration of Double-Loop Metamorphic Mechanisms With Prismatic Joints
,”
Mech. Mach. Theory
,
178
, p.
105081
.
49.
Wei
,
J.
, and
Dai
,
J. S.
,
2020
, “
Lie Group Based Type Synthesis Using Transformation Configuration Space for Reconfigurable Parallel Mechanisms With Bifurcation Between Spherical Motion and Planar Motion
,”
ASME J. Mech. Des.
,
142
(
6
), p.
063302
.
50.
Chen
,
Z.
,
Chen
,
Q.
,
Jia
,
G.
, and
Dai
,
J. S.
,
2023
, “
Sylvester’s Dialytic Elimination in Analysis of a Metamorphic Mechanism Derived From Ladybird Wings
,”
Mech. Mach. Theory
,
179
, p.
105102
.
51.
Wang
,
R.
,
Liao
,
Y.
,
Dai
,
J. S.
,
Chen
,
H.
, and
Cai
,
G.
,
2019
, “
The Isomorphic Design and Analysis of a Novel Plane-Space Polyhedral Metamorphic Mechanism
,”
Mech. Mach. Theory
,
131
, pp.
152
171
.
52.
Qin
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2014
, “
Multi-furcation in a Derivative Queer-Square Mechanism
,”
Mech. Mach. Theory
,
81
, pp.
36
53
.
53.
Wang
,
C.
,
Guo
,
H.
,
Liu
,
R.
, and
Deng
,
Z.
,
2023
, “
A Kirigami-Inspired Metamorphic Double-Loop Linkage With Multiple Single-Degree-of-Freedom Reconfiguration Branches
,”
ASME J. Mech. Des.
,
145
(
7
), p.
073301
.
54.
Marras
,
A. E.
,
Zhou
,
L.
,
Su
,
H.-J.
, and
Castro
,
C. E.
,
2015
, “
Programmable Motion of DNA Origami Mechanisms
,”
Proc. Natl. Acad. Sci. USA
,
112
(
3
), pp.
713
718
.
55.
Su
,
H.-J.
,
Castro
,
C. E.
,
Marras
,
A. E.
, and
Zhou
,
L.
,
2017
, “
The Kinematic Principle for Designing Deoxyribose Nucleic Acid Origami Mechanisms: Challenges and Opportunities1
,”
ASME J. Mech. Des.
,
139
(
6
), p.
062301
.
56.
Zhou
,
L.
,
Marras
,
A. E.
,
Su
,
H.-J.
, and
Castro
,
C. E.
,
2015
, “
Direct Design of an Energy Landscape With Bistable DNA Origami Mechanisms
,”
Nano Lett.
,
15
(
3
), pp.
1815
1821
.
57.
Zhou
,
L.
,
Marras
,
A. E.
,
Castro
,
C. E.
, and
Su
,
H.-J.
,
2016
, “
Pseudorigid-Body Models of Compliant DNA Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051013
.
58.
Zhou
,
L.
,
Su
,
H.-J.
,
Marras
,
A. E.
,
Huang
,
C.-M.
, and
Castro
,
C. E.
,
2017
, “
Projection Kinematic Analysis of DNA Origami Mechanisms Based on a Two-Dimensional TEM Image
,”
Mech. Mach. Theory
,
109
, pp.
22
38
.
59.
Lei
,
D.
,
Marras
,
A. E.
,
Liu
,
J.
,
Huang
,
C.-M.
,
Zhou
,
L.
,
Castro
,
C. E.
,
Su
,
H.-J.
, and
Ren
,
G.
,
2018
, “
Three-Dimensional Structural Dynamics of DNA Origami Bennett Linkages Using Individual-Particle Electron Tomography
,”
Nat. Commun.
,
9
(
1
), p.
592
.
60.
Gogu
,
G.
,
2007
, “
Structural Synthesis of Fully-Isotropic Parallel Robots With Schönflies Motions Via Theory of Linear Transformations and Evolutionary Morphology
,”
Eur. J. Mech. A/Solids
,
26
(
2
), pp.
242
269
.
61.
Gogu
,
G.
,
2009
, “
Structural Synthesis of Maximally Regular T3R2-Type Parallel Robots Via Theory of Linear Transformations and Evolutionary Morphology
,”
Robotica
,
27
(
1
), pp.
79
101
.
62.
Gogu
,
G.
,
2008
,
Structural Synthesis of Parallel Robots
,
Springer
,
Dordrecht
.
63.
Zhang
,
L.
,
Wang
,
D.
, and
Dai
,
J. S.
,
2009
, “
Genetic Evolution Principles for Metamorphic Mechanism Design
,”
Chin. J. Mech. Eng.
,
45
(
2
), p.
106
(in Chinese).
64.
Zhang
,
L.
,
Wang
,
D.
, and
Dai
,
J. S.
,
2008
, “
Biological Modeling and Evolution Based Synthesis of Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072303
.
65.
Maxwell
,
J. C.
, and
Niven
,
W. D.
,
1890
, “General Considerations Concerning Scientific Apparatus,”
The Science Papers of James Clerk Maxwell
,
W. D. Niven, ed., Cambridge University Press
, New York, pp.
507
508
.
66.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
67.
Yu
,
J. J.
,
Pei
,
X.
, and
Zong
,
G. H.
,
2014
,
Graphical Approach to Creative Design of Mechanical Devices
,
Beijing Science Press
,
China
(in Chinese).
68.
Xie
,
F.
,
Liu
,
X.-J.
,
You
,
Z.
, and
Wang
,
J.
,
2014
, “
Type Synthesis of 2T1R-Type Parallel Kinematic Mechanisms and the Application in Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
30
(
1
), pp.
1
10
.
69.
Xie
,
F.
,
Liu
,
X.-J.
, and
Wang
,
C.
,
2015
, “
Design of a Novel 3-DoF Parallel Kinematic Mechanism: Type Synthesis and Kinematic Optimization
,”
Robotica
,
33
(
3
), pp.
622
637
.
70.
Niven
,
W. D.
,
1890
, “General Considerations Concerning Scientific Apparatus,”
The Science Papers of James Clerk Maxwell
, 2st ed.,
W. D. Niven, ed., Cambridge University Press
, New York, pp.
507
508
.
71.
Blanding
,
D. L.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Principles
,
ASME Press
,
New York
.
72.
Feng
,
H.
,
Chen
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2017
, “
Kinematic Study of the General Plane-Symmetric Bricard Linkage and Its Bifurcation Variations
,”
Mech. Mach. Theory
,
116
, pp.
89
104
.
You do not currently have access to this content.