Abstract

This paper introduces the HyForm uncrewed vehicle engineering repository (HUVER), a comprehensive multi-modal dataset of uncrewed aerial vehicle (UAV) designs, complete with performance evaluations, derived from the HyForm UAV design testbed. The dataset includes 6051 unique UAV configurations, each represented using strings adhering to a designed grammar, images, 3D mesh models, and textual descriptions, alongside performance metrics obtained from physics-based simulations. Designed to support data-driven and artificial intelligence (AI)-driven design processes, one area in which this dataset can facilitate research is the surrogate modeling and generative design of UAVs, providing a resource for developing predictive models and supporting human–AI collaboration in UAV design. The dataset adheres to findable, accessible, interoperable, and reusable principles, ensuring it is retrievable, accessible, interoperable, and reusable, and is made available as an online repository for ease of use by the research community.

References

1.
Song
,
B.
,
Yuan
,
C.
,
Permenter
,
F.
,
Arechiga
,
N.
, and
Ahmed
,
F.
,
2024
, “
Data-Driven Car Drag Prediction With Depth and Normal Renderings
,”
ASME J. Mech. Des.
,
146
(
5
), p.
051714
.
2.
Liu
,
A.
,
Wang
,
Y.
,
Wang
,
X.
,
Liu
,
A.
,
Wang
,
Y.
, and
Wang
,
X.
,
2022
, “
Enabling Technologies of Data-Driven Engineering Design
,”
Data-Driven Engineering Design
, pp.
173
197
.
3.
Song
,
B.
,
Zhou
,
R.
, and
Ahmed
,
F.
,
2024
, “
Multi-modal Machine Learning in Engineering Design: A Review and Future Directions
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
1
), p.
010801
.
4.
Song
,
B.
,
Zurita
,
N. S.
,
Zhang
,
G.
,
Stump
,
G.
,
Balon
,
C.
,
Miller
,
S. W.
,
Yukish
,
M.
,
Cagan
,
J.
, and
McComb
,
C.
,
2020
, “
Toward Hybrid Teams: A Platform to Understand Human-Computer Collaboration During the Design of Complex Engineered Systems
,”
DESIGN Conference
,
Virtual
,
Oct. 26–29
, Vol. 1, Cambridge University Press, pp.
1551
1560
.
5.
Song
,
B.
,
Gyory
,
J. T.
,
Zhang
,
G.
,
Zurita
,
N. F. S.
,
Stump
,
G.
,
Martin
,
J.
, and
Miller
,
S.
,
2022
, “
Decoding the Agility of Artificial Intelligence-Assisted Human Design Teams
,”
Design Stud.
,
79
, p.
101094
.
6.
Xu
,
Z.
,
Hong
,
C.
,
Soria Zurita
,
N. F.
,
Gyory
,
J. T.
,
Stump
,
G.
,
Nolte
,
H.
, and
Cagan
,
J.
,
2024
, “
Adaptation Through Communication: Assessing Human-Artificial Intelligence Partnership for the Design of Complex Engineering Systems
,”
ASME J. Mech. Des.
,
146
(
8
), p.
081401
.
7.
Gyory
,
J. T.
,
Kotovsky
,
K.
,
McComb
,
C.
, and
Cagan
,
J.
,
2022
, “
Comparing the Impacts on Team Behaviors Between Artificial Intelligence and Human Process Management in Interdisciplinary Design Teams
,”
ASME J. Mech. Des.
,
144
(
10
), p.
104501
.
8.
Gyory
,
J. T.
,
Soria Zurita
,
N. F.
,
Martin
,
J.
,
Balon
,
C.
,
McComb
,
C.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2022
, “
Human Versus Artificial Intelligence: A Data-Driven Approach to Real-Time Process Management During Complex Engineering Design
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021405
.
9.
Song
,
B.
,
Soria Zurita
,
N. F.
,
Nolte
,
H.
,
Singh
,
H.
,
Cagan
,
J.
, and
McComb
,
C.
,
2022
, “
When Faced With Increasing Complexity: The Effectiveness of Artificial Intelligence Assistance for Drone Design
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021701
.
10.
Gyory
,
J. T.
,
Soria Zurita
,
N. F.
,
Cagan
,
J.
, and
McComb
,
C.
,
2023
, “
Independence Or Interaction? Understanding the Benefits and Limitations of Nominally Inspired and Interacting Sub-Structured Teams in a Virtual and Interdisciplinary Engineering Design Task
,”
ASME J. Mech. Des.
,
145
(
5
), p.
051405
.
11.
Zhang
,
G.
,
Zurita
,
N. F. S.
,
Stump
,
G.
,
Song
,
B.
,
Cagan
,
J.
, and
McComb
,
C.
,
2021
, “
Data on the Design and Operation of Drones by Both Individuals and Teams
,”
Data in Brief
,
36
, p.
107008
.
12.
Zurita
,
N. F. S.
,
Gyory
,
J. T.
,
Balon
,
C.
,
Martin
,
J.
,
Kotovsky
,
K.
,
Cagan
,
J.
, and
McComb
,
C.
,
2022
, “
Data on the Human Versus Artificial Intelligence Process Management Experiment
,”
Data in Brief
,
41
, p.
107917
.
13.
Zeng
,
Y.
,
Duan
,
Q.
,
Chen
,
X.
,
Peng
,
D.
,
Mao
,
Y.
, and
Yang
,
K.
,
2021
, “
Uavdata: A Dataset for Unmanned Aerial Vehicle Detection
,”
Soft Comput.
,
25
, pp.
5385
5393
.
14.
Cobb
,
A.
,
Roy
,
A.
,
Elenius
,
D.
,
Heim
,
F.
,
Swenson
,
B.
,
Whittington
,
S.
, and
Walker
,
J.
, “
AircraftVerse: A Large-Scale Multimodal Dataset of Aerial Vehicle Designs
,”
NeurIPS 2023 Datasets and Benchmarks
,
New Orleans, LA
,
Dec. 10–16
, Vol. 36, pp.
44524
44543
.
15.
Ragsdell
,
K.
,
Papalambros
,
P.
,
Mistree
,
F.
,
Williams
,
C.
,
Rai
,
R.
,
Panchal
,
J.
, and
Ferguson
,
S.
,
2015
, “
New Perspectives on Design Automation: Celebrating the 40th Anniversary of the Asme Design Automation Conference
,”
ASME J. Mech. Des.
,
137
(
5
), p.
050301
.
16.
Wilkinson
,
M. D.
,
Dumontier
,
M.
,
Aalbersberg
,
I. J.
,
Appleton
,
G.
,
Axton
,
M.
,
Baak
,
A.
,
Blomberg
,
N.
, et al.,
2016
, “
The Fair Guiding Principles for Scientific Data Management and Stewardship
,”
Scientific Data
,
3
(
1
), pp.
1
9
.
17.
Song
,
B.
,
McComb
,
C.
, and
Ahmed
,
F.
,
2022
, “
Assessing Machine Learnability of Image and Graph Representations for Drone Performance Prediction
,”
DESIGN Conference
,
Virtual
,
May 23–26
.
18.
Song
,
B.
,
Miller
,
S.
, and
Ahmed
,
F.
,
2023
, “
Attention-Enhanced Multimodal Learning for Conceptual Design Evaluations
,”
ASME J. Mech. Des.
,
145
(
4
), p.
041410
.
19.
Giannone
,
G.
,
Srivastava
,
A.
,
Winther
,
O.
, and
Ahmed
,
F.
, “
Aligning Optimization Trajectories with Diffusion Models for Constrained Design Generation
,”
NeurIPS 2023
,
New Orleans, LA
,
Dec. 10–16
.
20.
Kallioras
,
N. A.
, and
Lagaros
,
N. D.
,
2021
, “
Mlgen: Generative Design Framework Based on Machine Learning and Topology Optimization
,”
Appl. Sci.
,
11
(
24
), p.
12044
.
21.
Wang
,
W.
,
Wang
,
Y.
,
Zhao
,
H.
, and
Sciabola
,
S.
,
2022
, “A Transformer-Based Generative Model for de Novo Molecular Design”. Preprint arXiv:2210.08749.
22.
Faez
,
F.
,
Ommi
,
Y.
,
Baghshah
,
M. S.
, and
Rabiee
,
H. R.
,
2021
, “
Deep Graph Generators: A Survey
,”
IEEE Access
,
9
, pp.
106675
106702
.
23.
Song
,
B.
,
Yuan
,
C.
,
Permenter
,
F.
,
Arechiga
,
N.
, and
Ahmed
,
F.
,
2024
, “
Data-Driven Car Drag Coefficient Prediction With Depth and Normal Renderings
,”
ASME J. Mech. Des.
,
146
(
5
), p.
051714
.
You do not currently have access to this content.