Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Customer segmentation divides customers into groups with different characteristics and supports the design of customized products and tailored marketing strategies. Recent studies explore using online reviews as the data source and social network analysis as the fundamental technique for customer segmentation. These studies usually utilize the frequency of mentioned product attributes and/or customers' sentiments from online reviews in the segmentation process. However, few of them investigate the influence of different types of information (e.g., with or without sentiment, order information) on the segmentation performance. In addition, previous studies seldom consider and tackle the challenge of clustering high-dimensional data when online reviews contain customers' rich opinions towards multi-faceted attributes of a product. To fill these gaps, we propose a comprehensive framework for customer segmentation and need analysis based on sentiment network of online reviewers and graph embedding. The frequently mentioned product attributes and customers' sentiments are first extracted from online reviews. Then, a customer can be represented as a vector consisting of his/her sentiment polarities on each product attribute as well as rating and order information. After that, a social network of customers is established by examining the similarity of customer vectors. The network nodes are embedded into low-dimensional vectors, which can be further clustered into different groups, i.e., customer segments, and their respective needs can be analyzed by methods such as Importance–Performance Analysis. Our framework enables the construction and performance comparison of various types of networks, node compositions, and embedding methods. A case study employing the online reviews of a passenger vehicle in China's market is used to demonstrate the validity of the proposed framework. The results indicate that the customer segmentation generated by the sentiment network of online reviewers with Graph Autoencoder (GAE) embeddings performs better than other alternative models that do not utilize vector embeddings, fail to consider the sentiment information, or leverage bipartite network structures. Our framework provides more nuanced insights for designers to improve customers' satisfaction and increase the market competitiveness of their products.

References

1.
Hwang
,
H.
,
Jung
,
T.
, and
Suh
,
E.
,
2004
, “
An LTV Model and Customer Segmentation Based on Customer Value: A Case Study on the Wireless Telecommunication Industry
,”
Expert Syst. Appl.
,
26
(
2
), pp.
181
188
.
2.
Kim
,
S. Y.
,
Jung
,
T. S.
,
Suh
,
E. H.
, and
Hwang
,
H. S.
,
2006
, “
Customer Segmentation and Strategy Development Based on Customer Lifetime Value: A Case Study
,”
Expert Syst. Appl.
,
31
(
1
), pp.
101
107
.
3.
Wu
,
J.
, and
Lin
,
Z.
,
2005
, “
Research on Customer Segmentation Model by Clustering
,”
ACM Int. Conf. Proc. Ser.
,
113
, pp.
316
318
.
4.
Toften
,
K.
, and
Hammervoll
,
T.
,
2009
, “
Niche Firms and Marketing Strategy: An Exploratory Study of Internationally Oriented Niche Firms
,”
Eur. J. Mark.
,
43
(
11
), pp.
1378
1391
.
5.
Capon
,
N.
,
Fitzsimons
,
G. J.
, and
Prince
,
R. A.
,
1996
, “
An Individual Level Analysis of the Mutual Fund Investment Decision
,”
J. Financ. Serv. Res.
,
10
(
1
), pp.
59
82
.
6.
Joung
,
J.
, and
Kim
,
H. M.
,
2021
, “
Approach for Importance-Performance Analysis of Product Attributes From Online Reviews
,”
ASME J. Mech. Des.
,
143
(
8
), p.
081705
.
7.
Jiang
,
H.
,
Kwong
,
C. K.
, and
Yung
,
K. L.
,
2017
, “
A Methodology for Predicting Future Importance of Customer Needs Based on Online Customer Reviews
,”
ASME J. Mech. Des.
,
139
(
11
), p. 111413.
8.
Suryadi
,
D.
, and
Kim
,
H. M.
,
2019
, “
A Data-Driven Methodology to Construct Customer Choice Sets Using Online Data and Customer Reviews
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111103
.
9.
Park
,
S.
, and
Kim
,
H. M.
,
2022
, “
Finding Social Networks Among Online Reviewers for Customer Segmentation
,”
ASME J. Mech. Des.
,
144
(
12
), p.
121703
.
10.
Assent
,
I.
,
2012
, “
Clustering High Dimensional Data
,”
Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
,
2
(
4
), pp.
340
350
.
11.
Cooil
,
B.
,
Aksoy
,
L.
, and
Keiningham
,
T. L.
,
2008
, “
Approaches to Customer Segmentation
,”
J. Relatsh. Mark.
,
6
(
3–4
), pp.
9
39
.
12.
Smith
,
G. D.
,
Steele
,
N. C.
,
Albrecht
,
R. F.
, and
Schifferl
,
E.
,
1998
, “
Adaptive Product Optimization and Simultaneous Customer Segmentation: A Hospitality Product Design Study with Genetic Algorithms
,”
Artificial Neural Nets and Genetic Algorithms: Proceedings of the International Conference
,
Norwich, UK
,
May. 2–5
, pp.
215
218
.
13.
Ertian
,
H.
,
Huanhuan
,
L.
,
Daqiang
,
C.
, and
Yulian
,
F.
,
2013
, “
A Method for Customer Demands Groups Segmentation in Product Design Based on Fuzzy Clustering and Trigonometric Functions
,”
Proceedings of the 2013 Third International Conference on Intelligent System Design and Engineering Applications
,
Zhangjiajie, Hunan Province, China
,
Jan. 16–18
, pp.
95
98
.
14.
Hu
,
X.
,
Liu
,
A.
,
Li
,
X.
,
Dai
,
Y.
, and
Nakao
,
M.
,
2023
, “
Explainable AI for Customer Segmentation in Product Development
,”
CIRP Ann.
,
72
(
1
), pp.
89
92
.
15.
Wu
,
R.-S.
, and
Chou
,
P.-H.
,
2011
, “
Customer Segmentation of Multiple Category Data in E-Commerce Using a Soft-Clustering Approach
,”
Electron. Commer. Res. Appl.
,
10
(
3
), pp.
331
341
.
16.
Peker
,
S.
,
Kocyigit
,
A.
, and
Eren
,
P. E.
,
2017
, “
LRFMP Model for Customer Segmentation in the Grocery Retail Industry: A Case Study
,”
Mark. Intell. Plan.
,
35
(
4
), pp.
544
559
.
17.
Wang
,
L.
,
Youn
,
B. D.
,
Azarm
,
S.
, and
Kannan
,
P. K.
,
2011
, “
Customer-Driven Product Design Selection Using Web Based User-Generated Content
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
,
Aug. 28–31
, pp.
405
419
.
18.
Jiang
,
S.
,
Cai
,
S.
,
Olle Olle
,
G.
, and
Qin
,
Z.
,
2015
, “
Durable Product Review Mining for Customer Segmentation
,”
Kybernetes
,
44
(
1
), pp.
124
138
.
19.
Joung
,
J.
, and
Kim
,
H.
,
2023
, “
Interpretable Machine Learning-Based Approach for Customer Segmentation for New Product Development From Online Product Reviews
,”
Int. J. Inf. Manage.
,
70
, p.
102641
.
20.
Bondy
,
J. A.
, and
Murty
,
U. S. R.
,
1976
,
Graph Theory with Applications
,
The Macmillan Press Ltd.
,
London, UK
.
21.
Wang
,
M.
,
Chen
,
W.
,
Huang
,
Y.
,
Contractor
,
N. S.
, and
Fu
,
Y.
,
2016
, “
Modeling Customer Preferences Using Multidimensional Network Analysis in Engineering Design
,”
Des. Sci.
,
2
, p.
e11
.
22.
Bi
,
Y.
,
Qiu
,
Y.
,
Sha
,
Z.
,
Wang
,
M.
,
Fu
,
Y.
,
Contractor
,
N.
, and
Chen
,
W.
,
2021
, “
Modeling Multi-Year Customers' Considerations and Choices in China's Auto Market Using Two-Stage Bipartite Network Analysis
,”
Networks Spat. Econ.
,
21
(
2
), pp.
365
385
.
23.
Wang
,
H.-J.
,
2022
, “
Market Segmentation of Online Reviews: A Network Analysis Approach
,”
Int. J. Mark. Res.
,
64
(
5
), pp.
652
671
.
24.
Helal
,
N. A.
,
Ismail
,
R. M.
,
Badr
,
N. L.
, and
Mostafa
,
M. G. M.
,
2016
, “
A Novel Social Network Mining Approach for Customer Segmentation and Viral Marketing
,”
Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
,
6
(
5
), pp.
177
189
.
25.
Scarselli
,
F.
,
Gori
,
M.
,
Tsoi
,
A. C.
,
Hagenbuchner
,
M.
, and
Monfardini
,
G.
,
2008
, “
The Graph Neural Network Model
,”
IEEE Trans. Neural Networks
,
20
(
1
), pp.
61
80
.
26.
Kipf
,
T. N.
, and
Welling
,
M.
,
2016
, “
Semi-Supervised Classification With Graph Convolutional Networks
,” arXiv Prepr. arXiv1609.02907, pp.
1
3
.
27.
Veličković
,
P.
,
Cucurull
,
G.
,
Casanova
,
A.
,
Romero
,
A.
,
Lio
,
P.
, and
Bengio
,
Y.
,
2017
, “
Graph Attention Networks
,” arXiv Prepr. arXiv1710.10903, pp.
3
5
.
28.
Hamilton
,
W.
,
Ying
,
Z.
, and
Leskovec
,
J.
,
2017
, “
Inductive Representation Learning on Large Graphs
,”
Adv. Neural Inf. Process. Syst.
,
30
, pp.
1
6
.
29.
Chang
,
S.
,
Han
,
W.
,
Tang
,
J.
,
Qi
,
G.-J.
,
Aggarwal
,
C. C.
, and
Huang
,
T. S.
,
2015
, “
Heterogeneous Network Embedding via Deep Architectures
,”
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Sydney, Australia
,
Aug. 10–13
, pp.
119
128
.
30.
Dong
,
Y.
,
Chawla
,
N. V.
, and
Swami
,
A.
,
2017
, “
Metapath2vec: Scalable Representation Learning for Heterogeneous Networks
,”
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Halifax, Nova Scotia, Canada
,
Aug. 13–17
, pp.
135
144
.
31.
Gao
,
M.
,
Chen
,
L.
,
He
,
X.
, and
Zhou
,
A.
,
2018
, “
Bine: Bipartite Network Embedding
,”
Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval
,
Ann Arbor, MI
,
July 8–12
, pp.
715
724
.
32.
Li
,
R.
,
Chen
,
H.
,
Feng
,
F.
,
Ma
,
Z.
,
Wang
,
X.
, and
Hovy
,
E.
,
2021
, “
Dual Graph Convolutional Networks for Aspect-Based Sentiment Analysis
,”
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
,
Bangkok, Thailand
,
Aug. 1–6
, pp.
6319
6329
.
33.
Alamoudi
,
E. S.
, and
Alghamdi
,
N. S.
,
2021
, “
Sentiment Classification and Aspect-Based Sentiment Analysis on Yelp Reviews Using Deep Learning and Word Embeddings
,”
J. Decis. Syst.
,
30
(
2–3
), pp.
259
281
.
34.
Xu
,
F.
,
Lian
,
J.
,
Han
,
Z.
,
Li
,
Y.
,
Xu
,
Y.
, and
Xie
,
X.
,
2019
, “
Relation-Aware Graph Convolutional Networks for Agent-Initiated Social e-Commerce Recommendation
,”
Proceedings of the 28th ACM International Conference on Information and Knowledge Management
,
Beijing, China
,
Nov. 3–7
, pp.
529
538
.
35.
Salton
,
G.
, and
Buckley
,
C.
,
1988
, “
Term-Weighting Approaches in Automatic Text Retrieval
,”
Inf. Process. Manage.
,
24
(
5
), pp.
513
523
.
36.
Guthrie
,
D.
,
Allison
,
B.
,
Liu
,
W.
,
Guthrie
,
L.
, and
Wilks
,
Y.
,
2006
, “
A Closer Look at Skip-Gram Modelling
,”
Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC'06)
,
Genoa, Italy
,
May. 22–28
, pp.
1222
1225
.
37.
Pelleg
,
D.
, and
Moore
,
A. W.
,
2000
, “
X-Means: Extending k-Means With Efficient Estimation of the Number of Clusters
,”
Proceedings of the Seventeenth International Conference on Machine Learning
,
Stanford, CA
,
June 29–July 2
, pp.
727
734
.
38.
Cheng
,
A.
, and
Bi
,
Y.
,
2024
, “
An Integrated Data-Driven Framework for Vehicle Quality Analysis Based on Maintenance Record Mining and Bayesian Network
,”
Int. J. Qual. Reliab. Manage.
39.
Shen
,
M.
,
Cheng
,
A.
, and
Bi
,
Y.
,
2024
, “
An Integrated Framework for Importance-Performance Analysis of Product Attributes and Validation From Online Reviews and Maintenance Records
,”
Des. Sci.
,
10
, p.
e19
.
40.
Sun
,
Y.
,
Wang
,
S.
,
Li
,
Y.
,
Feng
,
S.
,
Tian
,
H.
,
Wu
,
H.
, and
Wang
,
H.
,
2020
, “
Ernie 2.0: A Continual Pre-Training Framework for Language Understanding
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
New York
,
Feb. 7–12
, pp.
8968
8975
.
41.
Xu
,
G.
,
Meng
,
Y.
,
Qiu
,
X.
,
Yu
,
Z.
, and
Wu
,
X.
,
2019
, “
Sentiment Analysis of Comment Texts Based on BiLSTM
,”
IEEE Access
,
7
, pp.
51522
51532
.
42.
Muflikhah
,
L.
, and
Baharudin
,
B.
,
2009
, “
Document Clustering Using Concept Space and Cosine Similarity Measurement
,”
Proceedings of the 2009 International Conference on Computer Technology and Development
,
Kota Kinabalu, Malaysia
,
Nov. 13–15
, pp.
58
62
.
43.
Ye
,
J.
,
2011
, “
Cosine Similarity Measures for Intuitionistic Fuzzy Sets and Their Applications
,”
Math. Comput. Model.
,
53
(
1–2
), pp.
91
97
.
44.
Wang
,
C.
,
Pan
,
S.
,
Long
,
G.
,
Zhu
,
X.
, and
Jiang
,
J.
,
2017
, “
Mgae: Marginalized Graph Autoencoder for Graph Clustering
,”
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
,
Singapore
,
Nov. 6–10
, pp.
889
898
.
45.
Pan
,
S.
,
Hu
,
R.
,
Long
,
G.
,
Jiang
,
J.
,
Yao
,
L.
, and
Zhang
,
C.
,
2018
, “
Adversarially Regularized Graph Autoencoder for Graph Embedding
,” arXiv Prepr. arXiv1802.04407, pp.
1
3
.
46.
Li
,
Z.
,
Shen
,
X.
,
Jiao
,
Y.
,
Pan
,
X.
,
Zou
,
P.
,
Meng
,
X.
,
Yao
,
C.
, and
Bu
,
J.
,
2020
, “
Hierarchical Bipartite Graph Neural Networks: Towards Large-Scale e-Commerce Applications
,”
Proceedings of the 2020 IEEE 36th International Conference on Data Engineering (ICDE)
,
Dallas, TX
, pp.
1677
1688
.
47.
Likas
,
A.
,
Vlassis
,
N.
, and
Verbeek
,
J. J.
,
2003
, “
The Global K-Means Clustering Algorithm
,”
Pattern Recognit.
,
36
(
2
), pp.
451
461
.
48.
Van Der Maaten
,
L.
,
2014
, “
Accelerating T-SNE Using Tree-Based Algorithms
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
3221
3245
.
49.
Cheng
,
J.-H.
,
Sun
,
D.-W.
,
Pu
,
H.
, and
Zhu
,
Z.
,
2015
, “
Development of Hyperspectral Imaging Coupled With Chemometric Analysis to Monitor K Value for Evaluation of Chemical Spoilage in Fish Fillets
,”
Food Chem.
,
185
, pp.
245
253
.
50.
Autohome
,
2022
, “Autohome”, https://www.autohome.com.cn/
51.
Che
,
W.
,
Li
,
Z.
, and
Liu
,
T.
,
2010
, “
LTP: A Chinese Language Technology Platform
,”
Proceedings of the 23rd International Conference on Computer Linguistics.
,
Beijing, China
,
Aug. 23-27
.
52.
Agnihotri
,
D.
,
Verma
,
K.
, and
Tripathi
,
P.
,
2014
, “
Pattern and Cluster Mining on Text Data
,”
Proceedings of the 2014 4th International Conference on Communication Systems and Network Technologies. CSNT 2014
,
Bhopal, India
,
Apr. 7-9
.
You do not currently have access to this content.