Abstract

The development of a product platform is an effective strategy to respond to dynamic market demands, decrease lead time, and delay product differentiation. However, the traditional product platform configuration method cannot satisfy the sustainability requirements for modern products. To solve this problem, a sustainable product multi-platform (SPMP) model for assembly/disassembly technology is proposed in this article. The proposed SPMP model measures the energy consumption of module instances during the installation based on the platform-based assembly index (PAI) and platform-based disassembly index (PDI), and provides a multi-platform solution for the assembly of the product family. To demonstrate the effectiveness of the proposed method, two product family cases are discussed. A simplified case shows that multi-objective particle swarm optimization (MOPSO) algorithm has a stronger optimization ability than the linear programing method in reducing the product processing cost. The hair dryer family case demonstrates that the proposed method reduces the energy consumption during assembly by linking sustainability to the product design.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Bortolini
,
M.
,
Galizia
,
F. G.
, and
Mora
,
C.
,
2018
, “
Reconfigurable Manufacturing Systems: Literature Review and Research Trend
,”
J. Manuf. Syst.
,
49
, pp.
93
106
.
2.
Gilmore
,
J. H.
, and
Pine
,
B. J.
,
1997
, “
The Four Faces of Mass Customization
,”
Harvard Business Rev.
,
75
(
1
), pp.
91
101
.
3.
Ben-Arieh
,
D.
,
Easton
,
T.
, and
Choubey
,
A. M.
,
2009
, “
Solving the Multiple Platforms Configuration Problem
,”
Int. J. Prod. Res.
,
47
(
7
), pp.
1969
1988
.
4.
Otto
,
K.
,
Hölttä-Otto
,
K.
,
Simpson
,
T. W.
,
Krause
,
D.
,
Ripperda
,
S.
, and
Ki Moon
,
S.
,
2016
, “
Global Views on Modular Design Research: Linking Alternative Methods to Support Modular Product Family Concept Development
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071101
.
5.
Park
,
J.
, and
Simpson
,
T. W.
,
2007
, “
Toward an Activity-Based Costing System for Product Families and Product Platforms in the Early Stages of Development
,”
Int. J. Prod. Res.
,
46
(
1
), pp.
99
130
.
6.
Meyer
,
M.
, and
Lehnerd
,
A. P.
,
1997
,
The Power of Product Platform—Building Value and Cost Leadership
,
Free Press
,
New York
.
7.
Galizia
,
F. G.
,
ElMaraghy
,
H.
,
Bortolini
,
M.
, and
Mora
,
C.
,
2020
, “
Product Platforms Design, Selection and Customisation in High-Variety Manufacturing
,”
Int. J. Prod. Res.
,
58
(
3
), pp.
893
911
.
8.
Simpson
,
T. W.
, and
D’Souza
,
B. S.
,
2004
, “
Assessing Variable Levels of Platform Commonality Within a Product Family Using a Multiobjective Genetic Algorithm
,”
Concurr. Eng. Res. Appl.
,
12
(
2
), pp.
119
129
.
9.
Hoppmann
,
J.
,
Rebentisch
,
E.
,
Dombrowski
,
U.
, and
Zahn
,
T.
,
2011
, “
A Framework for Organizing Lean Product Development
,”
Eng. Manage. J.
,
23
(
1
), pp.
3
15
.
10.
Asli
,
S.-S.
,
Janis
,
T.
,
Eileen
,
M. V. A.
, and
Nihal
,
O.
,
2014
, “
A Structured Approach to Platform-Driven Product Planning
,”
Eng. Manage. J.
,
26
(
2
), pp.
10
23
.
11.
Feng
,
Y.
,
Hong
,
Z.
,
Cheng
,
J.
,
Tian
,
G.
,
Zhang
,
H.
, and
Tan
,
J.
,
2017
, “
Environmental-Friendly Reliability Allocation for Product Platform Based on Expert Measurement and ICN
,”
Comput. Electr. Eng.
,
64
, pp.
132
144
.
12.
Kim
,
S.
, and
Moon
,
S. K.
,
2017
, “
Sustainable Platform Identification for Product Family Design
,”
J. Cleaner Prod.
,
143
, pp.
567
581
.
13.
Moon
,
S. K.
,
Park
,
K. J.
, and
Simpson
,
T. W.
,
2013
, “
Platform Design Variable Identification for a Product Family Using Multi-Objective Particle Swarm Optimization
,”
Res. Eng. Des.
,
25
(
2
), pp.
95
108
.
14.
Simpson
,
T. W.
,
Maier
,
J. R.
, and
Mistree
,
F.
,
2001
, “
Product Platform Design: Method and Application
,”
Res. Eng. Des.
,
13
(
1
), pp.
2
22
.
15.
Zha
,
X. F.
, and
Sriram
,
R. D.
,
2006
, “
Platform-Based Product Design and Development: A Knowledge-Intensive Support Approach
,”
Knowl. Based Syst.
,
19
(
7
), pp.
524
543
.
16.
Liu
,
Z.
,
Wong
,
Y. S.
, and
Lee
,
K. S.
,
2010
, “
Modularity Analysis and Commonality Design: A Framework for the Top-Down Platform and Product Family Design
,”
Int. J. Prod. Res.
,
48
(
12
), pp.
3657
3680
.
17.
Kim
,
G.
,
Kwon
,
Y.
,
Suh
,
E. S.
, and
Ahn
,
J.
,
2016
, “
Analysis of Architectural Complexity for Product Family and Platform
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071401
.
18.
Hanafy
,
M.
, and
ElMaraghy
,
H.
,
2017
, “
Modular Product Platform Configuration and Co-Planning of Assembly Lines Using Assembly and Disassembly
,”
J. Manuf. Syst.
,
42
, pp.
289
305
.
19.
Zhao
,
S.
,
Zhang
,
Q.
,
Peng
,
Z.
, and
Lu
,
X.
,
2022
, “
Product Platform Configuration for Product Families: Module Clustering Based on Product Architecture and Manufacturing Process
,”
Adv. Eng. Inform.
,
52
, p.
101622
.
20.
Hanafy
,
M.
, and
ElMaraghy
,
H.
,
2015
, “
A Modular Product Multi-Platform Configuration Model
,”
Int. J. Comput. Integr. Manuf.
,
28
(
9
), pp.
999
1014
.
21.
Song
,
Q.
,
Ni
,
Y.
, and
Ralescu
,
D. A.
,
2021
, “
Product Configuration Using Redundancy and Standardisation in an Uncertain Environment
,”
Int. J. Prod. Res.
,
59
(
21
), pp.
6451
6470
.
22.
Moussa
,
M.
, and
ElMaraghy
,
H.
,
2021
, “
Multiple Platforms Design and Product Family Process Planning for Combined Additive and Subtractive Manufacturing
,”
J. Manuf. Syst.
,
61
, pp.
509
529
.
23.
Moussa
,
M.
, and
ElMaraghy
,
H.
,
2022
, “
Multi-Period Additive/Subtractive Product Platform Design and Inventory Management
,”
Int. J. Prod. Res.
,
60
(
24
), pp.
7262
7280
.
24.
Van den Broeke
,
M.
,
Boute
,
R.
, and
Samii
,
B.
,
2015
, “
Evaluation of Product-Platform Decisions Based on Total Supply Chain Costs
,”
Int. J. Prod. Res.
,
53
(
18
), pp.
5545
5563
.
25.
Wang
,
Q.
,
Tang
,
D.
,
Yin
,
L.
,
Salido
,
M. A.
,
Giret
,
A.
, and
Xu
,
Y.
,
2016
, “
Bi-Objective Optimization for Low-Carbon Product Family Design
,”
Rob. Comput. Integr. Manuf.
,
41
, pp.
53
65
.
26.
Kim
,
S.
, and
Moon
,
S. K.
,
2017
, “
Sustainable Product Family Configuration Based on a Platform Strategy
,”
J. Eng. Des.
,
28
(
10–12
), pp.
731
764
.
27.
Omidzadeh
,
D.
,
Sajadi
,
S. M.
,
Bozorgi-Amiri
,
A.
, and
Movahedi Sobhani
,
F.
,
2022
, “
A Sustainability Approach to Vehicle Modular Platform Design: A Mathematical Model
,”
Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
,
236
(
6
), pp.
2296
2310
.
28.
Bley
,
H.
,
Reinhart
,
G.
,
Seliger
,
G.
,
Bernardi
,
M.
, and
Korne
,
T.
,
2004
, “
Appropriate Human Involvement in Assembly and Disassembly
,”
CIRP Ann. Manuf. Technol.
,
53
(
2
), pp.
487
509
.
29.
Battaïa
,
O.
,
Dolgui
,
A.
,
Heragu
,
S. S.
,
Meerkov
,
S. M.
, and
Tiwari
,
M. K.
,
2018
, “
Design for Manufacturing and Assembly/Disassembly: Joint Design of Products and Production Systems
,”
Int. J. Prod. Res.
,
56
(
24
), pp.
7181
7189
.
30.
Javorova
,
A.
,
Hrušková
,
E.
, and
Velíšek
,
K.
,
2011
, “
Assembly and Disassembly via Automation Tools
,”
Key Eng. Mater.
,
467–469
, pp.
2066
2071
.
31.
Hua
,
B.
,
Wang
,
X. J.
,
Liu
,
X. C.
,
Luo
,
Y. S.
, and
Ding
,
Y. F.
,
2013
, “
Study on Assembly Design Approach Based on Synchronous Modeling Technology
,”
Adv. Mater. Res.
,
734–737
, pp.
2685
2688
.
32.
Li
,
C.
, and
Hou
,
W.
,
2022
, “
Assembly Sequence Planning Based on Hierarchical Model
,”
Wireless Commun. Mobile Comput.
,
2022
, p.
9461794
.
33.
Jiao
,
Z.
, and
Xing
,
Y.
,
2018
, “
Clamping-Sequence Optimisation Based on Heuristic Algorithm for Sheet-Metal Components
,”
Int. J. Prod. Res.
,
56
(
24
), pp.
7190
7200
.
34.
Kuo
,
T. C.
,
Zhang
,
H. C.
, and
Huang
,
S. H.
,
2000
, “
Disassembly Analysis for Electromechanical Products: A Graph-Based Heuristic Approach
,”
Int. J. Prod. Res.
,
38
(
5
), pp.
993
1007
.
35.
Lee
,
S. C.
, and
Shih
,
L. H.
,
2012
, “
A Novel Heuristic Approach to Determine Compromise Management for End-of-Life Electronic Products
,”
J. Operat. Res. Soc.
,
63
(
5
), pp.
606
619
.
36.
Tian
,
G.
,
Zhou
,
M.
, and
Li
,
P.
,
2018
, “
Disassembly Sequence Planning Considering Fuzzy Component Quality and Varying Operational Cost
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
2
), pp.
748
760
.
37.
Sriramdas
,
V.
,
Chaturvedi
,
S. K.
, and
Gargama
,
H.
,
2014
, “
Fuzzy Arithmetic Based Reliability Allocation Approach During Early Design and Development
,”
Expert Syst. Appl.
,
41
(
7
), pp.
3444
3449
.
38.
Haimes
,
Y.
,
Lasdon
,
L.
, and
Wismer
,
D.
,
1971
, “
On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization
,”
IEEE Trans. Syst., Man Cybern.
,
1
(
3
), pp.
296
297
.
39.
Pierini
,
L. M.
, and
Poldi
,
K. C.
,
2022
, “
A Bi-Objective Multiperiod One-Dimensional Cutting Stock Problem
,”
Pesquisa Operacional
,
42
, p.
e258432
.
40.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings IEEE International Conference Neural Networks
,
Perth, WA, Australia
,
Nov. 27
.
41.
Ziaei
,
M.
,
Ketabi
,
S.
, and
Ghandehari
,
M.
,
2022
, “
Concurrent Optimizing Configuration, Price, Warranty, and Supply Policy in Configurable Product Family (CPF)
,”
J. Eng. Des.
,
33
(
1
), pp.
15
38
.
42.
Hong
,
Z.
,
Dai
,
W.
,
Luh
,
H.
, and
Yang
,
C.
,
2018
, “
Optimal Configuration of a Green Product Supply Chain With Guaranteed Service Time and Emission Constraints
,”
Eur. J. Operat. Res.
,
266
(
2
), pp.
663
677
.
You do not currently have access to this content.