Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Structural design synthesis considering discrete elements can be formulated as a sequential decision process solved using deep reinforcement learning, as shown in prior work. By modeling structural design synthesis as a Markov decision process (MDP), the states correspond to specific structural designs, the discrete actions correspond to specific design alterations, and the rewards are related to the improvement in the altered design’s performance with respect to the design objective and specified constraints. Here, the MDP action definition is extended by integrating parametric design grammars that further enable the design agent to not only alter a given structural design’s topology, but also its element parameters. In considering topological and parametric actions, both the dimensionality of the state and action space and the diversity of the action types available to the agent in each state significantly increase, making the overall MDP learning task more challenging. Hence, this paper also addresses discrete design synthesis problems with large state and action spaces by significantly extending the network architecture. Specifically, a hierarchical-inspired deep neural network architecture is developed to allow the agent to learn the type of action, topological or parametric, to apply, thus reducing the complexity of possible action choices in a given state. This extended framework is applied to the design synthesis of planar structures considering both discrete elements and cross-sectional areas, and it is observed to adeptly learn policies that synthesize high performing design solutions.

References

1.
Stiny
,
G.
, and
Gips
,
J.
,
1980
, “
Production Systems and Grammars: A Uniform Characterization
,”
Environ. Plann. B: Plann. Des.
,
7
(
4
), pp.
399
408
.
2.
Shea
,
K.
, and
Cagan
,
J.
,
1999
, “
Languages and Semantics of Grammatical Discrete Structures
,”
AI EDAM
,
13
(
4
), pp.
241
251
.
3.
Antonsson
,
E. K.
, and
Cagan
,
J.
,
2005
,
Formal Engineering Design Synthesis
,
Cambridge University Press
,
Cambridge
.
4.
Chakrabarti
,
A.
,
2013
,
Engineering Design Synthesis: Understanding, Approaches and Tools
,
Springer Science & Business Media
,
London
.
5.
Campbell
,
M. I.
, and
Shea
,
K.
,
2014
, “
Computational Design Synthesis
,”
AI EDAM
,
28
(
3
), pp.
207
208
.
6.
Hooshmand
,
A.
, and
Campbell
,
M. I.
,
2016
, “
Truss Layout Design and Optimization Using a Generative Synthesis Approach
,”
Comput. Struct.
,
163
, pp.
1
28
.
7.
Königseder
,
C.
, and
Shea
,
K.
,
2016
, “
Visualizing Relations Between Grammar Rules, Objectives, and Search Space Exploration in Grammar-Based Computational Design Synthesis
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101101
.
8.
Mata
,
M. P.
,
Ahmed-Kristensen
,
S.
, and
Shea
,
K.
,
2019
, “
Implementation of Design Rules for Perception Into a Tool for Three-Dimensional Shape Generation Using a Shape Grammar and a Parametric Model
,”
ASME J. Mech. Des.
,
141
(
1
), p.
011101
.
9.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Rusu
,
A. A.
,
Veness
,
J.
,
Bellemare
,
M. G.
,
Graves
,
A.
,
Riedmiller
,
M.
,
Fidjeland
,
A. K.
, and
Ostrovski
,
G.
,
2015
, “
Human-Level Control Through Deep Reinforcement Learning
,”
Nature
,
518
(
7540
), p.
529
.
10.
Silver
,
D.
,
Huang
,
A.
,
Maddison
,
C. J.
,
Guez
,
A.
,
Sifre
,
L.
,
Van Den Driessche
,
G.
,
Schrittwieser
,
J.
,
Antonoglou
,
I.
,
Panneershelvam
,
V.
, and
Lanctot
,
M.
,
2016
, “
Mastering the Game of Go With Deep Neural Networks and Tree Search
,”
Nature
,
529
(
7587
), p.
484
.
11.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
2018
,
Reinforcement Learning: An Introduction
,
MIT Press
,
Cambridge
.
12.
Burnap
,
A.
,
Liu
,
Y.
,
Pan
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Estimating and Exploring the Product Form Design Space Using Deep Generative Models
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
50107
.
13.
Dering
,
M. L.
, and
Tucker
,
C. S.
,
2017
, “
Generative Adversarial Networks for Increasing the Veracity of Big Data
,”
IEEE International Conference on Big Data (Big Data)
, pp.
2595
2602
.
14.
Dering
,
M. L.
, and
Tucker
,
C. S.
,
2017
, “
Implications of Generative Models in Government
,”
AAAI Fall Symposium Series
.
15.
Vermeer
,
K.
,
Kuppens
,
R.
, and
Herder
,
J.
,
2018
, “
Kinematic Synthesis Using Reinforcement Learning
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
51753
.
16.
Shu
,
D.
,
Cunningham
,
J.
,
Stump
,
G.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2020
, “
3D Design Using Generative Adversarial Networks and Physics-Based Validation
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071701
.
17.
Yu
,
Y.
,
Hur
,
T.
,
Jung
,
J.
, and
Jang
,
I. G.
,
2019
, “
Deep Learning for Determining a Near-Optimal Topological Design Without Any Iteration
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
787
799
.
18.
Jang
,
S.
,
Yoo
,
S.
, and
Kang
,
N.
,
2022
, “
Generative Design by Reinforcement Learning: Enhancing the Diversity of Topology Optimization Designs
,”
Computer-Aided Design
,
146
, p.
103225
.
19.
Sun
,
H.
, and
Ma
,
L.
,
2020
, “
Generative Design by Using Exploration Approaches of Reinforcement Learning in Density-Based Structural Topology Optimization
,”
Designs
,
4
(
2
), p.
10
.
20.
Raina
,
A.
,
McComb
,
C.
, and
Cagan
,
J.
,
2019
, “
Learning to Design From Humans: Imitating Human Designers Through Deep Learning
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111102
.
21.
Puentes
,
L.
,
Raina
,
A.
,
Cagan
,
J.
, and
McComb
,
C.
,
2020
, “
Modeling a Strategic Human Engineering Design Process: Human-Inspired Heuristic Guidance Through Learned Visual Design Agents
,”
Proceedings of the Design Society: DESIGN Conference
,
1
, pp.
355
364
.
22.
Raina
,
A.
,
Puentes
,
L.
,
Cagan
,
J.
, and
McComb
,
C.
,
2021
, “
Goal-Directed Design Agents: Integrating Visual Imitation With One-Step Lookahead Optimization for Generative Design
,”
ASME J. Mech. Des.
,
143
(
12
), p.
124501
.
23.
Hayashi
,
K.
, and
Ohsaki
,
M.
,
2020
, “
Reinforcement Learning and Graph Embedding for Binary Truss Topology Optimization Under Stress and Displacement Constraints
,”
Front. Built Environ.
,
6
, p.
59
.
24.
Zhu
,
S.
,
Ohsaki
,
M.
,
Hayashi
,
K.
, and
Guo
,
X.
,
2021
, “
Machine-Specified Ground Structures for Topology Optimization of Binary Trusses Using Graph Embedding Policy Network
,”
Adv. Eng. Softw.
,
159
, p.
103032
.
25.
Hayashi
,
K.
, and
Ohsaki
,
M.
,
2022
, “
Graph-Based Reinforcement Learning for Discrete Cross-Section Optimization of Planar Steel Frames
,”
Adv. Eng. Inform.
,
51
, p.
101512
.
26.
Kupwiwat
,
C.-T.
,
Hayashi
,
K.
, and
Ohsaki
,
M.
,
2024
, “
Multi-objective Optimization of Truss Structure Using Multi-agent Reinforcement Learning and Graph Representation
,”
Eng. Appl. Artificial Intell.
,
129
, p.
107594
.
27.
Ororbia
,
M. E.
, and
Warn
,
G. P.
,
2020
, “
Structural Design Synthesis Through a Sequential Decision Process
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
83983
, p.
V009T09A045
.
28.
Ororbia
,
M. E.
, and
Warn
,
G. P.
,
2021
, “
Design Synthesis Through a Markov Decision Process and Reinforcement Learning Framework
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021002
.
29.
Ororbia
,
M. E.
, and
Warn
,
G. P.
,
2023
, “
Design Synthesis of Structural Systems as a Markov Decision Process Solved With Deep Reinforcement Learning
,”
ASME J. Mech. Des.
,
145
(
6
), p.
061701
.
30.
Oberhauser
,
M.
,
Sartorius
,
S.
,
Gmeiner
,
T.
, and
Shea
,
K.
,
2015
, “Computational Design Synthesis of Aircraft Configurations With Shape Grammars,”
Design Computing and Cognition’14
,
Springer
,
Switzerland
, pp.
21
39
.
31.
Spallino
,
R.
, and
Rizzo
,
S.
,
2002
, “
Multi-objective Discrete Optimization of Laminated Structures
,”
Mech. Res. Commun.
,
29
(
1
), pp.
17
25
.
32.
Sjølund
,
J.
,
Peeters
,
D.
, and
Lund
,
E.
,
2019
, “
Discrete Material and Thickness Optimization of Sandwich Structures
,”
Composite Struct.
,
217
, pp.
75
88
.
33.
Marjanovic
,
N.
,
Isailovic
,
B.
,
Marjanovic
,
V.
,
Milojevic
,
Z.
,
Blagojevic
,
M.
, and
Bojic
,
M.
,
2012
, “
A Practical Approach to the Optimization of Gear Trains With Spur Gears
,”
Mech. Mach. Theory
,
53
, pp.
1
16
.
34.
Königseder
,
C.
, and
Shea
,
K.
,
2016
, “
Comparing Strategies for Topologic and Parametric Rule Application in Automated Computational Design Synthesis
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011102
.
35.
Shea
,
K.
,
Cagan
,
J.
, and
Fenves
,
S. J.
,
1997
, “
A Shape Annealing Approach to Optimal Truss Design With Dynamic Grouping of Members
,”
ASME J. Mech. Des.
,
119
(
3
), pp.
388
394
.
36.
Dayan
,
P.
, and
Hinton
,
G. E.
,
1992
, “
Feudal Reinforcement Learning
,” Advances in Neural Information Processing Systems, Vol.
5
.
37.
Dietterich
,
T. G.
,
1998
, “
The Maxq Method for Hierarchical Reinforcement Learning
,” ICML, Vol.
98
, pp.
118
126
.
38.
Wang
,
Z.
,
Schaul
,
T.
,
Hessel
,
M.
,
Hasselt
,
H.
,
Lanctot
,
M.
, and
Freitas
,
N.
,
2016
, “
Dueling Network Architectures for Deep Reinforcement Learning
,” International Conference on Machine Learning,
PMLR
, pp.
1995
2003
.
39.
Wei
,
F.
,
Feng
,
G.
,
Sun
,
Y.
,
Wang
,
Y.
,
Qin
,
S.
, and
Liang
,
Y.-C.
,
2020
, “
Network Slice Reconfiguration by Exploiting Deep Reinforcement Learning With Large Action Space
,”
IEEE Trans. Netw. Serv. Manage.
,
17
(
4
), pp.
2197
2211
.
40.
Tavakoli
,
A.
,
Pardo
,
F.
, and
Kormushev
,
P.
,
2018
, “
Action Branching Architectures for Deep Reinforcement Learning
,” Proceedings of the AAAI Conference on Artificial Intelligence, Vol.
32
.
41.
Schaul
,
T.
,
Quan
,
J.
,
Antonoglou
,
I.
, and
Silver
,
D.
,
2015
, “Prioritized Experience Replay,” preprint arXiv:1511.05952.
42.
Yang
,
T.
,
Tang
,
H.
,
Bai
,
C.
,
Liu
,
J.
,
Hao
,
J.
,
Meng
,
Z.
,
Liu
,
P.
, and
Wang
,
Z.
,
2021
, “Exploration in Deep Reinforcement Learning: A Comprehensive Survey,” preprint arXiv:2109.06668.
43.
Tieleman
,
T.
, and
Hinton
,
G.
,
2012
, “
Lecture 6.5-rmsprop: Divide the Gradient by a Running Average of Its Recent Magnitude
,”
COURSERA: Neural Networks for Machine Learning
,
4
(
2
), pp.
26
31
.
44.
Achtziger
,
W.
, and
Stolpe
,
M.
,
2007
, “
Truss Topology Optimization With Discrete Design Variables-Guaranteed Global Optimality and Benchmark Examples
,”
Struct. Multidiscipl. Optim.
,
34
, pp.
1
20
.
45.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
21
(
2
), pp.
120
127
.
You do not currently have access to this content.