Abstract

In engineering design, global sensitivity analysis (GSA) is used for analyzing the effects of inputs on the system response and is commonly studied with analytical or surrogate models. However, such models fail to capture nonlinear behaviors in complex systems and involve several modeling assumptions. Besides model-focused methods, a data-driven GSA approach, rooted in interpretable machine learning, would also identify the relationships between system components. Moreover, a special need in engineering design extends beyond performing GSA for input variables individually, but instead evaluating the contributions of variable groups on the system response. In this article, we introduce a flexible, interpretable artificial neural network model to uncover individual as well as grouped global sensitivity indices for understanding complex physical interactions in engineering design problems. The proposed model allows the investigation of the main effects and second-order effects in GSA according to functional analysis of variance (FANOVA) decomposition. To draw a higher-level understanding, we further use the subset decomposition method to analyze the significance of the groups of input variables. Using the design of a programmable material system (PMS) as an example, we demonstrate the use of our approach for examining the impact of material, architecture, and stimulus variables as well as their interactions. This information lays the foundation for managing design space complexity, summarizing the relationships between system components, and deriving design guidelines for PMS development.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Iooss
,
B.
, and
Lemaître
,
P.
,
2015
, “A Review on Global Sensitivity Analysis Methods,”
Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications: Operations Research/Computer Science Interfaces Series
,
G.
Dellino
, and
C.
Meloni
, eds.,
Springer US
,
Boston, MA
, pp.
101
122
.
2.
Chatterjee
,
S.
, and
Hadi
,
A. S.
,
2009
,
Sensitivity Analysis in Linear Regression
,
John Wiley and Sons
,
Hoboken, NJ
.
3.
Saltelli
,
A.
,
Annoni
,
P.
,
Azzini
,
I.
,
Campolongo
,
F.
,
Ratto
,
M.
, and
Tarantola
,
S.
,
2010
, “
Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index
,”
Comput. Phys. Commun.
,
181
(
2
), pp.
259
270
.
4.
Christopher Frey
,
H.
, and
Patil
,
S. R.
,
2002
, “
Identification and Review of Sensitivity Analysis Methods
,”
Risk Anal.
,
22
(
3
), pp.
553
578
.
5.
Miller
,
T.
,
2019
, “
Explanation in Artificial Intelligence: Insights From the Social Sciences
,”
Artif. Intell.
,
267
, pp.
1
38
.
6.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
,
1996
, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
478
485
.
7.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
.
8.
Yang
,
Z.
,
Zhang
,
A.
, and
Sudjianto
,
A.
,
2021
, “
GAMI-Net: An Explainable Neural Network Based on Generalized Additive Models With Structured Interactions
,”
Pattern Recognit.
,
120
, p.
108192
.
9.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
,
2004
, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
875
886
.
10.
Molnar
,
C.
,
2020
,
Interpretable Machine Learning
,
Lulu.com
,
Research Triangle, NC
.
11.
Friedman
,
J. H.
,
2001
, “
Greedy Function Approximation: A Gradient Boosting Machine
,”
Ann. Stat.
,
29
(
5
), pp.
1189
1232
.
12.
Apley
,
D. W.
, and
Zhu
,
J.
,
2020
, “
Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models
,”
J. R. Stat. Soc. B
,
82
(
4
), pp.
1059
1086
.
13.
Breiman
,
L.
,
1996
, “
Bagging Predictors
,”
Mach. Learn.
,
24
(
2
), pp.
123
140
.
14.
Goldstein
,
A.
,
Kapelner
,
A.
,
Bleich
,
J.
, and
Pitkin
,
E.
,
2015
, “
Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation
,”
J. Comput. Graph. Stat.
,
24
(
1
), pp.
44
65
.
15.
Ribeiro
,
M. T.
,
Singh
,
S.
, and
Guestrin
,
C.
,
2016
, “
‘Why Should I Trust You?’: Explaining the Predictions of Any Classifier
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
ACM
, pp.
1135
1144
.
16.
Lundberg
,
S. M.
, and
Lee
,
S. I.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
Adv. Neural Infor. Proc. Syst.
,
30
.
17.
Marchese Robinson
,
R. L.
,
Palczewska
,
A.
,
Palczewski
,
J.
, and
Kidley
,
N.
,
2017
, “
Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets
,”
J. Chem. Inf. Model.
,
57
(
8
), pp.
1773
1792
.
18.
Baryannis
,
G.
,
Dani
,
S.
, and
Antoniou
,
G.
,
2019
, “
Predicting Supply Chain Risks Using Machine Learning: The Trade-off Between Performance and Interpretability
,”
Future Gener. Comput. Syst.
,
101
, pp.
993
1004
.
19.
Dunnington
,
D. W.
,
Trueman
,
B. F.
,
Raseman
,
W. J.
,
Anderson
,
L. E.
, and
Gagnon
,
G. A.
,
2021
, “
Comparing the Predictive Performance, Interpretability, and Accessibility of Machine Learning and Physically Based Models for Water Treatment
,”
ACS ES&T Eng.
,
1
(
3
), pp.
348
356
.
20.
Johansson
,
U.
,
Sönströd
,
C.
,
Norinder
,
U.
, and
Boström
,
H.
,
2011
, “
Trade-Off Between Accuracy and Interpretability for Predictive in Silico Modeling
,”
Future Med. Chem.
,
3
(
6
), pp.
647
663
.
21.
Özesmi
,
S. L.
, and
Özesmi
,
U.
,
1999
, “
An Artificial Neural Network Approach to Spatial Habitat Modelling With Interspecific Interaction
,”
Ecol. Modell.
,
116
(
1
), pp.
15
31
.
22.
David
,
G. G.
,
1991
, “
Interpreting Neural-Network Connection Weights
,”
AI Expert
,
6
(
4
), pp.
46
51
.
23.
Scardi
,
M.
, and
Harding
,
L. W.
,
1999
, “
Developing an Empirical Model of Phytoplankton Primary Production: A Neural Network Case Study
,”
Ecol. Modell.
,
120
(
2
), pp.
213
223
.
24.
Dimopoulos
,
Y.
,
Bourret
,
P.
, and
Lek
,
S.
,
1995
, “
Use of Some Sensitivity Criteria for Choosing Networks With Good Generalization Ability
,”
Neural Process. Lett.
,
2
(
6
), pp.
1
4
.
25.
Gevrey
,
M.
,
Dimopoulos
,
I.
, and
Lek
,
S.
,
2003
, “
Review and Comparison of Methods to Study the Contribution of Variables in Artificial Neural Network Models
.”
Ecol. Modell.
,
160
(
3
), pp.
249
264
.
26.
Sobol′
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1
), pp.
271
280
.
27.
Campolongo
,
F.
,
Cariboni
,
J.
, and
Saltelli
,
A.
,
2007
, “
An Effective Screening Design for Sensitivity Analysis of Large Models
,”
Environ. Modell. Softw.
,
22
(
10
), pp.
1509
1518
.
28.
Sobol
,
I. M.
, and
Kucherenko
,
S.
,
2010
, “
Derivative Based Global Sensitivity Measures
,”
Procedia Soc. Behav. Sci.
,
2
(
6
), pp.
7745
7746
.
29.
Hooker
,
G.
,
2007
, “
Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables
,”
J. Comput. Graph. Stat.
,
16
(
3
), pp.
709
732
.
30.
Python
, n.d
.
, “PiML 0.5.0.Post1: A Low-Code Interpretable Machine Learning Toolbox in Python,” https://github.com/SelfExplainML/PiML-Toolbox, Accessed September 7, 2023.
31.
Bukhari
,
S. S.
,
Vardaxoglou
,
J. (.
, and
Whittow
,
W.
,
2019
, “
A Metasurfaces Review: Definitions and Applications
,”
Appl. Sci.
,
9
(
13
), p.
2727
.
32.
Chen
,
H.-T.
,
Taylor
,
A. J.
, and
Yu
,
N.
,
2016
, “
A Review of Metasurfaces: Physics and Applications
,”
Rep. Prog. Phys.
,
79
(
7
), p.
076401
.
33.
Specht
,
M.
,
Berwind
,
M.
, and
Eberl
,
C.
,
2021
, “
Adaptive Wettability of a Programmable Metasurface
,”
Adv. Eng. Mater.
,
23
(
2
), p.
2001037
.
34.
Liu
,
S.
,
Zhang
,
L.
,
Bai
,
G. D.
, and
Cui
,
T. J.
,
2019
, “
Flexible Controls of Broadband Electromagnetic Wavefronts With a Mechanically Programmable Metamaterial
,”
Sci. Rep.
,
9
(
1
), p.
1809
.
35.
Lor
,
C.
,
Phon
,
R.
,
Lee
,
M.
, and
Lim
,
S.
,
2022
, “
Multi-Functional Thermal-Mechanical Anisotropic Metasurface With Shape Memory Alloy Actuators
,”
Mater. Des.
,
216
, p.
110569
.
36.
Yin
,
H.
,
Liang
,
Q.
,
Duan
,
Y.
,
Fan
,
J.
, and
Li
,
Z.
,
2022
, “
3D Printing of a Thermally Programmable Conformal Metasurface
,”
Adv. Mater. Technol.
,
7
(
7
), p.
2101479
.
37.
Shirmanesh
,
G. K.
,
Sokhoyan
,
R.
,
Wu
,
P. C.
, and
Atwater
,
H. A.
,
2020
, “
Electro-Optically Tunable Multifunctional Metasurfaces
,”
ACS Nano
,
14
(
6
), pp.
6912
6920
.
38.
Wan
,
X.
,
Qi
,
M. Q.
,
Chen
,
T. Y.
, and
Cui
,
T. J.
,
2016
, “
Field-Programmable Beam Reconfiguring Based on Digitally-Controlled Coding Metasurface
,”
Sci. Rep.
,
6
(
1
), p.
20663
.
39.
Fu
,
X.
,
Shi
,
L.
,
Yang
,
J.
,
Fu
,
Y.
,
Liu
,
C.
,
Wu
,
J. W.
,
Yang
,
F.
,
Bao
,
L.
, and
Cui
,
T. J.
,
2022
, “
Flexible Terahertz Beam Manipulations Based on Liquid-Crystal-Integrated Programmable Metasurfaces
,”
ACS Appl. Mater. Interfaces
,
14
(
19
), pp.
22287
22294
.
40.
Dong
,
S.
,
Zhang
,
K.
,
Yu
,
Z.
, and
Fan
,
J. A.
,
2016
, “
Electrochemically Programmable Plasmonic Antennas
,”
ACS Nano
,
10
(
7
), pp.
6716
6724
.
41.
Li
,
J.
,
Chen
,
Y.
,
Hu
,
Y.
,
Duan
,
H.
, and
Liu
,
N.
,
2020
, “
Magnesium-Based Metasurfaces for Dual-Function Switching Between Dynamic Holography and Dynamic Color Display
,”
ACS Nano
,
14
(
7
), pp.
7892
7898
.
42.
Kao
,
T. S.
,
Rogers
,
E. T. F.
,
Ou
,
J. Y.
, and
Zheludev
,
N. I.
,
2012
, “
‘Digitally’ Addressable Focusing of Light Into a Subwavelength Hot Spot
,”
Nano Lett.
,
12
(
6
), pp.
2728
2731
.
43.
Buijs
,
R. D.
,
Wolterink
,
T. A. W.
,
Gerini
,
G.
,
Verhagen
,
E.
, and
Femius Koenderink
,
A.
,
2021
, “
Programming Metasurface Near-Fields for Nano-Optical Sensing
,”
Adv. Opt. Mater.
,
9
(
15
), p.
2100435
.
44.
Lee
,
D.
,
Jiang
,
S.
,
Balogun
,
O.
, and
Chen
,
W.
,
2022
, “
Dynamic Control of Plasmonic Localization by Inverse Optimization of Spatial Phase Modulation
,”
ACS Photonics
,
9
(
2
), pp.
351
359
.
45.
COMSOL Multiphysics®
,
n.d.
, www.comsol.com, COMSOL AB, Stockholm, Sweden.
46.
Dolar
,
T.
,
Lee
,
D.
, and
Chen
,
W.
,
2023
, “
Interpretable Neural Network Analyses for Understanding Complex Physical Interactions in Engineering Design
,”
International Design Engineering Technical Conferences
,
Boston, MA
,
Aug. 20–23
, American Society of Mechanical Engineers, Vol. 87301, p. V03AT03A021.
You do not currently have access to this content.