Abstract

This paper presents a wrist exoskeleton called the KIST Upper-Limb EXoskeleton (KULEX)-wrist for activities of daily living assistance of the elderly and the disabled. A novel linkage-based structure of the rotational mechanism with three degrees-of-freedom is proposed. The proposed wrist mechanism is composed of two prismatic-universal-spherical serial chains and one revolute-revolute-revolute spherical chain. Besides, a combination of a planar slider-crank and spherical four-bar linkages was employed as a drive mechanism for power transmission. Kinematic analysis was conducted to understand its working principle. Then, the dimensions of all the linkages were synthesized to meet the structural design suitable for the wearable exoskeleton and the transmission quality. In addition, motion twists and wrenches were geometrically derived. Finally, a prototype of the KULEX-wrist was designed, and then its performance of mechanical stiffness, motion capability, and power assistance was verified.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Hong
,
M. B.
,
Kim
,
S. J.
,
Ihn
,
Y. S.
,
Jeong
,
G. -C.
, and
Kim
,
K.
,
2019
, “
KULEX-Hand: An Underactuated Wearable Hand for Grasping Power Assistance
,”
IEEE Trans. Robot.
,
35
(
2
), pp.
420
432
.
2.
Fasoli
,
S. E.
,
Krebs
,
H. I.
,
Stein
,
J.
,
Frontera
,
W. R.
, and
Hogan
,
N.
,
2003
, “
Effects of Robotic Therapy on Motor Impairment and Recovery in Chronic Stroke
,”
Arch. Phys. Med. Rehabil.
,
84
(
4
), pp.
477
482
.
3.
Kwakkel
,
G.
,
Kollen
,
B. J.
, and
Krebs
,
H. I.
,
2008
, “
Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review
,”
Neurorehabilit. Neural Repair
,
22
(
2
), pp.
111
121
.
4.
Krebs
,
H.
,
Dipietro
,
L.
,
Levy-Tzedek
,
S.
,
Fasoli
,
S.
,
Rykman-Berland
,
A.
,
Zipse
,
J.
,
Fawcett
,
J.
, et al.,
2008
, “
A Paradigm Shift for Rehabilitation Robotics
,”
IEEE Eng. Med. Biol. Mag.
,
27
(
4
), pp.
61
70
.
5.
Hogan
,
N.
,
Krebs
,
H.
,
Charnnarong
,
J.
,
Srikrishna
,
P.
, and
Sharon
,
A.
,
1992
, “
MIT-MANUS: A Workstation for Manual Therapy and Training. I
,”
Proceedings of IEEE International Workshop on Robot and Human Communication (ROMAN)
,
Tokyo, Japan
,
September
, pp.
161
165
.
6.
Burgar
,
C. G.
,
Lum
,
P. S.
,
Shor
,
P. C.
, and
Van der Loos
,
H. M.
,
2000
, “
Development of Robots for Rehabilitation Therapy: The Palo Alto Va/Stanford Experience
,”
J. Rehabil. Res. Develop.
,
37
(
6
), pp.
663
673
.
7.
Mancisidor
,
A.
,
Zubizarreta
,
A.
,
Cabanes
,
I.
,
Bengoa
,
P.
, and
Jung
,
J. H.
,
2018
, “
Kinematical and Dynamical Modeling of a Multipurpose Upper Limbs Rehabilitation Robot
,”
Robot. Comput.-Integr. Manuf.
,
49
, pp.
374
387
.
8.
Lo
,
H. S.
, and
Xie
,
S. Q.
,
2012
, “
Exoskeleton Robots for Upper-Limb Rehabilitation: State of the Art and Future Prospects
,”
Med. Eng. Phys.
,
34
(
3
), pp.
261
268
.
9.
Perry
,
J.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mech.
,
12
(
4
), pp.
408
417
.
10.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2012
, “
Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation
,”
IEEE Trans. Robot.
,
28
(
4
), pp.
922
931
.
11.
Letier
,
P.
,
Avraam
,
M.
,
Veillerette
,
S.
,
Horodinca
,
M.
,
De Bartolomei
,
M.
,
Schiele
,
A.
, and
Preumont
,
A.
,
2008
, “
Sam: A 7-DOF Portable Arm Exoskeleton With Local Joint Control
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Nice, France
,
Sept. 22–26
, pp.
3501
3506
.
12.
Mihelj
,
M.
,
Nef
,
T.
, and
Riener
,
R.
,
2007
, “
Armin II - 7 DOF Rehabilitation Robot: Mechanics and Kinematics
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Rome, Italy
,
Apr. 10–14
, pp.
4120
4125
.
13.
Hong
,
M.
,
Kim
,
S. J.
, and
Kim
,
K.
,
2013
, “
KULEX: ADL Power Assistant Robotic System for the Elderly and the Disabled (Abstract for Video)
,”
Proceedings of International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)
,
Jeju, South Korea
,
Oct. 30–Nov. 2
, pp.
121
122
.
14.
Dežman
,
M.
,
Asfour
,
T.
,
Ude
,
A.
, and
Gams
,
A.
,
2019
, “
Exoskeleton Arm Pronation/Supination Assistance Mechanism With a Guided Double Rod System
,”
IEEE/RAS International Conference on Humanoid Robots (Humanoids)
,
Toronto, Canada
,
Oct. 15–17
, pp.
559
564
.
15.
Lambelet
,
C.
,
Lyu
,
M.
,
Woolley
,
D.
,
Gassert
,
R.
, and
Wenderoth
,
N.
,
2017
, “
The eWrist-A Wearable Wrist Exoskeleton With SEMG-Based Force Control for Stroke Rehabilitation
,”
Proceedings of International Conference on Rehabilitation Robotics (ICORR)
,
London, UK
,
July 17–20
, pp.
726
733
.
16.
Lambelet
,
C.
,
Temiraliuly
,
D.
,
Siegenthaler
,
M.
,
Wirth
,
M.
,
Woolley
,
D. G.
,
Lambercy
,
O.
,
Gassert
,
R.
, and
Wenderoth
,
N.
,
2020
, “
Characterization and Wearability Evaluation of a Fully Portable Wrist Exoskeleton for Unsupervised Training After Stroke
,”
J. NeuroEng. Rehabil.
,
17
(
1
), pp.
1
16
.
17.
Zhang
,
L.
,
Li
,
J.
,
Cui
,
Y.
,
Dong
,
M.
,
Fang
,
B.
, and
Zhang
,
P.
,
2020
, “
Design and Performance Analysis of a Parallel Wrist Rehabilitation Robot (PWRR)
,”
Robot. Auton. Syst.
,
125
, p.
103390
.
18.
Martinez
,
J. A.
,
Ng
,
P.
,
Lu
,
S.
,
Campagna
,
M. S.
, and
Celik
,
O.
,
2013
, “
Design of Wrist Gimbal: A Forearm and Wrist Exoskeleton for Stroke Rehabilitation
,”
Proceedings of IEEE International Conference on Rehabilitation Robotics (ICORR)
,
Seattle, WA
,
June 24–26
, pp.
1
6
.
19.
Squeri
,
V.
,
Masia
,
L.
,
Giannoni
,
P.
,
Sandini
,
G.
, and
Morasso
,
P.
,
2013
, “
Wrist Rehabilitation in Chronic Stroke Patients by Means of Adaptive, Progressive Robot-aided Therapy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
2
), pp.
312
325
.
20.
Pezent
,
E.
,
Rose
,
C. G.
,
Deshpande
,
A. D.
, and
O’Malley
,
M. K.
,
2017
, “
Design and Characterization of the Openwrist: A Robotic Wrist Exoskeleton for Coordinated Hand-Wrist Rehabilitation
,”
Proceedings of International Conference on Rehabilitation Robotics (ICORR)
,
London, UK
,
July 17–20
, pp.
720
725
.
21.
Buongiorno
,
D.
,
Sotgiu
,
E.
,
Leonardis
,
D.
,
Marcheschi
,
S.
,
Solazzi
,
M.
, and
Frisoli
,
A.
,
2018
, “
WRES: A Novel 3 DOF Wrist Exoskeleton With Tendon-Driven Differential Transmission for Neuro-Rehabilitation and Teleoperation
,”
IEEE Robot. Autom. Lett.
,
3
(
3
), pp.
2152
2159
.
22.
Yoon
,
D.
,
Kang
,
L.
,
Manzoor
,
S.
, and
Choi
,
Y.
,
2021
, “
The Improved DLR Wrist: Design and Analysis of 2-Degrees-of-Freedom Rotational Mechanism Using Spatial Antiparallelogram Linkages
,”
ASME J. Mech. Des.
,
143
(
5
), p.
053303
.
23.
Gupta
,
A.
,
O’Malley
,
M. K.
,
Patoglu
,
V.
, and
Burgar
,
C.
,
2008
, “
Design, Control and Performance of Ricewrist: A Force Feedback Wrist Exoskeleton for Rehabilitation and Training
,”
Int. J. Robot. Res.
,
27
(
2
), pp.
233
251
.
24.
Wu
,
K.-Y.
,
Su
,
Y.-Y.
,
Yu
,
Y.-L.
,
Lin
,
C.-H.
, and
Lan
,
C.-C.
,
2019
, “
A 5-Degrees-of-Freedom Lightweight Elbow-Wrist Exoskeleton for Forearm Fine-Motion Rehabilitation
,”
IEEE/ASME Trans. Mechatron.
,
24
(
6
), pp.
2684
2695
.
25.
Lee
,
J.
,
Song
,
B.-W.
, and
Yang
,
W.
,
2018
, “
Design of Exoskeleton-Type Wrist Human-Machine Interface Based on Over-Actuated Coaxial Spherical Parallel Mechanism
,”
Adv. Mech. Eng.
,
10
(
2
), p.
1687814017753896
.
26.
Lee
,
J.
,
Kim
,
H.
, and
Yang
,
W.
,
2021
, “
Development of Wrist Interface Based on Fully Actuated Coaxial Spherical Parallel Mechanism for Force Interaction
,”
Sensors
,
21
(
23
), p.
8073
.
27.
Bian
,
H.
,
Chen
,
Z.
,
Wang
,
H.
, and
Zhao
,
T.
,
2017
, “
Mechanical Design of EFW EXO II: A Hybrid Exoskeleton for Elbow-Forearm-Wrist Rehabilitation
,”
Proceedings of International Conference on Rehabilitation Robotics (ICORR)
,
London, UK
,
July 17–20
, pp.
689
694
.
28.
Hussain
,
S.
,
Jamwal
,
P. K.
, and
Van Vliet
,
P.
,
2021
, “
Design Synthesis and Optimization of a 4-SPS Intrinsically Compliant Parallel Wrist Rehabilitation Robotic Orthosis
,”
J. Comput. Des. Eng.
,
8
(
6
), pp.
1562
1575
.
29.
Rosen
,
J.
,
Perry
,
J.
,
Manning
,
N.
,
Burns
,
S.
, and
Hannaford
,
B.
,
2005
, “
The Human Arm Kinematics and Dynamics During Daily Activities - Toward a 7 DOF Upper Limb Powered Exoskeleton
,”
Proceedings of IEEE International Conference on Advanced Robotics
,
Seattle, WA
,
July 18–20
, pp.
532
539
.
30.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2011
,
Geometric Design of Linkages
,
Springer
,
New York
.
31.
Yoon
,
D.
, and
Choi
,
Y.
,
2017
, “
Underactuated Finger Mechanism Using Contractible Sider-Cranks and Stackable Four-Bar Linkages
,”
IEEE/ASME Trans. Mechatron.
,
22
(
5
), pp.
2046
2057
.
32.
Hong
,
M. B.
, and
Choi
,
Y. J.
,
2009
, “
Kinestatic Analysis of Nonsingular Lower Mobility Manipulators
,”
IEEE Trans. Robot.
,
25
(
4
), pp.
938
942
.
33.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
John Wiley & Sons, Inc
,
New York
.
34.
Chen
,
C.
, and
Angeles
,
J.
,
2007
, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
.
35.
Perry
,
J.
, and
Rosen
,
J.
,
2006
, “
Design of a 7 Degree-of-freedom Upper-Limb Powered Exoskeleton
,”
Proceedings of RAS/EMBS IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Pisa, Italy
,
Feb. 20–22
, pp.
805
810
.
36.
Hong
,
M. B.
, and
Choi
,
Y. J.
,
2012
, “
Design Method of Planar Three-Degrees-of-Freedom Serial Compliance Device With Desired Compliance Characteristics
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
9
), pp.
2331
2344
.
37.
Lee
,
J.
,
Kim
,
M.
, and
Kim
,
K.
,
2015
, “
A Robust Control Method of Multi-DOF Power-Assistant Robots for Unknown External Perturbation Using sEMG Signals
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 3
, pp.
1045
1051
.
You do not currently have access to this content.