Abstract

Exploring the opportunities for incorporating Artificial Intelligence (AI) to support team problem-solving has been the focus of intensive ongoing research. However, while the incorporation of such AI tools into human team problem-solving can improve team performance, it is still unclear what modality of AI integration will lead to a genuine human–AI partnership capable of mimicking the dynamic adaptability of humans. This work unites human designers with AI Partners as fellow team members who can both reactively and proactively collaborate in real-time toward solving a complex and evolving engineering problem. Team performance and problem-solving behaviors are examined using the HyForm collaborative research platform, which uses an online collaborative design environment that simulates a complex interdisciplinary design problem. The problem constraints are unexpectedly changed midway through problem-solving to simulate the nature of dynamically evolving engineering problems. This work shows that after the unexpected design constraints change, or shock, is introduced, human–AI hybrid teams perform similarly to human teams, demonstrating the capability of AI Partners to adapt to unexpected events. Nonetheless, hybrid teams do struggle more with coordination and communication after the shock is introduced. Overall, this work demonstrates that these AI design partners can participate as active partners within human teams during a large, complex task, showing promise for future integration in practice.

References

2.
Caldwell
,
S.
,
Sweetser
,
P.
,
O’Donnell
,
N.
,
Knight
,
M. J.
,
Aitchison
,
M.
,
Gedeon
,
T.
,
Johnson
,
D.
,
Brereton
,
M.
,
Gallagher
,
M.
, and
Conroy
,
D.
,
2022
, “
An Agile New Research Framework for Hybrid Human-AI Teaming: Trust, Transparency, and Transferability
,”
ACM Trans. Interact. Intell. Syst.
,
12
(
3
), pp.
17:1
17:36
.
3.
van den Bosch
,
K.
,
Schoonderwoerd
,
T.
,
Blankendaal
,
R.
, and
Neerincx
,
M.
,
2019
, “Six Challenges for Human-AI Co-Learning,”
Adaptive Instructional Systems: Lecture Notes in Computer Science
,
R. A.
Sottilare
, and
J.
Schwarz
, eds.,
Springer International Publishing
,
Cham
, pp.
572
589
.
4.
DigitalWorkforceTeam/HACO: Files of the HACO Framework
,” GitHub, https://github.com/DigitalWorkforceTeam/HACO, Accessed February 17, 2023.
5.
Top Strategic Predictions for 2018 and Beyond: Pace Yourself, for Sanity’s Sake
,” Gartner, https://www.gartner.com/en/doc/3803530-top-strategic-predictions-for-2018-and-beyond-pace-yourself-for-sanitys-sake, Accessed February 18, 2023.
6.
Dubey
,
A.
,
Abhinav
,
K.
,
Jain
,
S.
,
Arora
,
V.
, and
Puttaveerana
,
A.
,
2020
, “
HACO: A Framework for Developing Human-AI Teaming
,”
Proceedings of the 13th Innovations in Software Engineering Conference on Formerly Known as India Software Engineering Conference, in ISEC 2020
,
New York
,
March
, Association for Computing Machinery, pp.
1
9
.
7.
Song
,
B.
,
Soria Zurita
,
N. F.
,
Nolte
,
H.
,
Singh
,
H.
,
Cagan
,
J.
, and
McComb
,
C.
,
2022
, “
When Faced With Increasing Complexity: The Effectiveness of Artificial Intelligence Assistance for Drone Design
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021701
.
8.
Soria Zurita
,
N. F.
, and
Tumer
,
I. Y.
,
2017
, “
A Survey: Towards Understanding Emergent Behavior in Complex Engineered Systems
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
,
American Society of Mechanical Engineers Digital Collection
, pp.
1
12
.
9.
Song
,
B.
,
Soria Zurita
,
N. F.
,
Zhang
,
G.
,
Stump
,
G.
,
Balon
,
C.
,
Miller
,
S. W.
,
Yukish
,
M.
,
Cagan
,
J.
, and
McComb
,
C.
,
2020
, “
Toward Hybrid Teams: A Platform to Understand Human-Computer Collaboration During the Design of Complex Engineered Systems
,”
Proceedings of the Design Society: DESIGN Conference
,
Dubrovnik, Croatia
,
Oct. 26–29
, Vol.
1
, pp.
1551
1560
.
10.
Yerkes
,
R. M.
, and
Dodson
,
J. D.
,
1908
, “
The Relation of Strength of Stimulus to Rapidity of Habit-Formation
,”
J. Comp. Neurol. Psychol.
,
18
(
5
), pp.
459
482
.
11.
Koch
,
J.
,
2017
, “
Design Implications for Designing with a Collaborative AI
,”
Proceedings of the SS-17-01: Artificial Intelligence for the Social Good; SS-17-02: Computational Construction Grammar and Natural Language Understanding; SS-17-03: Computational Context: Why It’s Important, What It Means, and Can It Be Computed?; SS-17-04: Designing the User Experience of Machine Learning Systems; SS-17-05: Interactive Multisensory Object Perception for Embodied Agents; SS-17-06: Learning from Observation of Humans; SS-17-07: Science of Intelligence: Computational Principles of Natural and Artificial Intelligence; SS-17-08: Wellbeing AI: From Machine Learning to Subjectivity Oriented Computing
,
Palo Alto, CA
,
March
,
AAAI Press
, pp.
415
418
. https://research.aalto.fi/en/publications/design-implications-for-designing-with-a-collaborative-ai, Accessed March 5, 2023.
12.
Kim
,
S.-G.
,
Yoon
,
S. M.
,
Yang
,
M.
,
Choi
,
J.
,
Akay
,
H.
, and
Burnell
,
E.
,
2019
, “
AI for Design: Virtual Design Assistant
,”
CIRP Ann.
,
68
(
1
), pp.
141
144
.
13.
Valdez
,
S.
,
Seepersad
,
C.
, and
Kambampati
,
S.
,
2021
, “
A Framework for Interactive Structural Design Exploration
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Conference
,
American Society of Mechanical Engineers Digital Collection
, pp.
1
12
.
14.
Camburn
,
B.
,
Arlitt
,
R.
,
Anderson
,
D.
,
Sanaei
,
R.
,
Raviselam
,
S.
,
Jensen
,
D.
, and
Wood
,
K. L.
,
2020
, “
Computer-Aided Mind Map Generation via Crowdsourcing and Machine Learning
,”
Res. Eng. Des.
,
31
(
4
), pp.
383
409
.
15.
Chong
,
L.
, and
Yang
,
M.
,
2023
, “
AI vs. Human: The Public's Perceptions of the Design Abilities of Artificial Intelligence
,”
Proc. Des. Soc.
,
3
, pp.
495
504
.
16.
Raina
,
A.
,
McComb
,
C.
, and
Cagan
,
J.
,
2019
, “
Learning to Design From Humans: Imitating Human Designers Through Deep Learning
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111102
.
17.
Saadi
,
J. I.
, and
Yang
,
M. C.
,
2023
, “
Generative Design: Reframing the Role of the Designer in Early-Stage Design Process
,”
ASME J. Mech. Des.
,
145
(
4
), p.
041411
.
18.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
19.
Heyrani Nobari
,
A.
,
Rashad
,
M. F.
, and
Ahmed
,
F.
,
2021
, “
CreativeGAN: Editing Generative Adversarial Networks for Creative Design Synthesis
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Conference
,
American Society of Mechanical Engineers Digital Collection
, pp.
1
13
.
20.
Chen
,
Q.
,
Wang
,
J.
,
Pope
,
P.
,
(Wayne) Chen
,
W.
, and
Fuge
,
M.
,
2022
, “
Inverse Design of Two-Dimensional Airfoils Using Conditional Generative Models and Surrogate Log-Likelihoods
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021712
.
21.
Camburn
,
B.
,
He
,
Y.
,
Raviselvam
,
S.
,
Luo
,
J.
, and
Wood
,
K.
,
2020
, “
Machine Learning-Based Design Concept Evaluation
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031113
.
22.
Song
,
B.
,
Gyory
,
J. T.
,
Zhang
,
G.
,
Soria Zurita
,
N. F.
,
Stump
,
G.
,
Martin
,
J.
,
Miller
,
S. W.
, et al
,
2022
, “
Decoding the Agility of Artificial Intelligence-Assisted Human Design Teams
,”
Des. Stud.
,
79
(
C
), p.
101094
.
23.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
TopologyGAN: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
24.
Sharpe
,
C.
,
Wiest
,
T.
,
Wang
,
P.
, and
Seepersad
,
C. C.
,
2019
, “
A Comparative Evaluation of Supervised Machine Learning Classification Techniques for Engineering Design Applications
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121404
.
25.
Dering
,
M. L.
,
Tucker
,
C. S.
, and
Kumara
,
S.
,
2018
, “
An Unsupervised Machine Learning Approach to Assessing Designer Performance During Physical Prototyping
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
1
), p.
011002
.
26.
Williams
,
G.
,
Meisel
,
N. A.
,
Simpson
,
T. W.
, and
McComb
,
C.
,
2019
, “
Design Repository Effectiveness for 3D Convolutional Neural Networks: Application to Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111701
.
27.
Gyory
,
J. T.
,
Soria Zurita
,
N. F.
,
Martin
,
J.
,
Balon
,
C.
,
McComb
,
C.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2022
, “
Human Versus Artificial Intelligence: A Data-Driven Approach to Real-Time Process Management During Complex Engineering Design
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021405
.
28.
Woodruff
,
R.
,
Beebe
,
N.
,
Kaur Josan
,
P.
,
Dutta
,
P.
,
Short
,
A.-R.
,
Wong
,
R. K. W.
,
Dunbar
,
B. J.
,
Selva
,
D.
, and
Diaz-Artiles
,
A.
,
2021
, “
3D Interactive Model of HERA to Support ECLSS Anomaly Resolution Using a Virtual Assistant
,”
Proceedings of the 2021 IEEE Aerospace Conference (50100)
,
Big Sky, MT
,
March
, pp.
1
10
.
29.
Daughertyrc
,
P. R.
, and
Wilson
,
H. J.
,
2018
,
Human + Machine: Reimagining Work in the Age of AI
,
Harvard Business Press
,
Brighton, MA
.
30.
Wilson
,
H. J.
, and
Daugherty
,
P. R.
,
2018
, “
Collaborative Intelligence: Humans and AI Are Joining Forces
,” Harvard Business Review, https://hbr.org/2018/07/collaborative-intelligence-humans-and-ai-are-joining-forces. Accessed February 17, 2023.
31.
Zhang
,
G.
,
Raina
,
A.
,
Cagan
,
J.
, and
McComb
,
C.
,
2021
, “
A Cautionary Tale About the Impact of AI on Human Design Teams
,”
Des. Stud.
,
72
(
C
), p.
100990
.
32.
Wright
,
J. L.
,
Chen
,
J. Y. C.
,
Quinn
,
S. A.
, and
Barnes
,
M. J.
,
2013
, “
The Effects of Level of Autonomy on Human-Agent Teaming for Multi-Robot Control and Local Security Maintenance
,” https://apps.dtic.mil/sti/pdfs/ADA595105.pdf.
33.
Wright
,
J. L.
,
Chen
,
J. Y. C.
, and
Barnes
,
M. J.
,
2018
, “
Human–Automation Interaction for Multiple Robot Control: the Effect of Varying Automation Assistance and Individual Differences on Operator Performance
,”
Ergonomics
,
61
(
8
), pp.
1033
1045
.
34.
Wright
,
M. C.
, and
Kaber
,
D. B.
,
2005
, “
Effects of Automation of Information-Processing Functions on Teamwork
,”
Hum. Factors
,
47
(
1
), pp.
50
66
.
35.
Chen
,
J. Y. C.
, and
Barnes
,
M. J.
,
2012
, “
Supervisory Control of Multiple Robots: Effects of Imperfect Automation and Individual Differences
,”
Hum. Factors
,
54
(
2
), pp.
157
174
.
36.
Fan
,
X.
,
Oh
,
S.
,
McNeese
,
M.
,
Yen
,
J.
,
Cuevas
,
H.
,
Strater
,
L.
, and
Endsley
,
M. R.
,
2008
, “
The Influence of Agent Reliability on Trust in Human-Agent Collaboration
,”
Proceedings of the 15th European Conference on Cognitive Ergonomics: the Ergonomics of Cool Interaction, in ECCE ‘08
,
New York, Association for Computing Machinery
,
January
, pp.
1
8
.
37.
Demir
,
M.
,
McNeese
,
N. J.
, and
Cooke
,
N. J.
,
2016
, “
Team Communication Behaviors of the Human-Automation Teaming
,”
Proceedings of the 2016 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA)
,
San Diego, CA
,
Mar. 20–25
, pp.
28
34
.
38.
Fan
,
X.
,
Sun
,
S.
,
McNeese
,
M.
, and
Yen
,
J.
,
2005
, “
Extending the Recognition-Primed Decision Model to Support Human-Agent Collaboration
,”
Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, in AAMAS ‘05
,
New York, Association for Computing Machinery
,
July
, pp.
945
952
.
39.
McNeese
,
N. J.
,
Demir
,
M.
,
Cooke
,
N. J.
, and
Myers
,
C.
,
2018
, “
Teaming With a Synthetic Teammate: Insights Into Human-Autonomy Teaming
,”
Hum. Factors
,
60
(
2
), pp.
262
273
.
40.
O’Neill
,
T.
,
McNeese
,
N.
,
Barron
,
A.
, and
Schelble
,
B.
,
2022
, “
Human–Autonomy Teaming: A Review and Analysis of the Empirical Literature
,”
Hum. Factors
,
64
(
5
), pp.
904
938
.
41.
Demir
,
M.
,
Cooke
,
N. J.
, and
Amazeen
,
P. G.
,
2018
, “
A Conceptual Model of Team Dynamical Behaviors and Performance in Human-Autonomy Teaming
,”
Cogn. Syst. Res.
,
52
, pp.
497
507
.
42.
Demir
,
M.
,
Likens
,
A. D.
,
Cooke
,
N. J.
,
Amazeen
,
P. G.
, and
McNeese
,
N. J.
,
2019
, “
Team Coordination and Effectiveness in Human-Autonomy Teaming
,”
IEEE Trans. Hum.-Mach. Syst.
,
49
(
2
), pp.
150
159
.
43.
Demir
,
M.
,
McNeese
,
N. J.
, and
Cooke
,
N. J.
,
2017
, “
Team Situation Awareness Within the Context of Human-Autonomy Teaming
,”
Cogn. Syst. Res.
,
46
, pp.
3
12
.
44.
McComb
,
C.
,
Boatwright
,
P.
, and
Cagan
,
J.
,
2023
, “
Focus and Modality: Defining a Roadmap to Future AI-Human Teaming in Design
,”
Proc. Des. Soc.
,
3
, pp.
1905
1914
.
45.
Werder
,
K.
, and
Maedche
,
A.
,
2018
, “
Explaining the Emergence of Team Agility: A Complex Adaptive Systems Perspective
,”
Inf. Technol. People
,
31
(
3
), pp.
819
844
.
46.
Zhang
,
G.
,
Soria Zurita
,
N. F.
,
Stump
,
G.
,
Song
,
B.
,
Cagan
,
J.
, and
McComb
,
C.
,
2021
, “
Data on the Design and Operation of Drones by Both Individuals and Teams
,”
Data in Br.
,
36
, p.
107008
.
47.
Walliser
,
J.
,
de Visser
,
E.
,
Wiese
,
E.
, and
Shaw
,
T.
,
2019
, “
Team Structure and Team Building Improve Human–Machine Teaming With Autonomous Agents
,”
J. Cogn. Eng. Decis. Mak.
,
13
(
4
), pp.
258
278
.
48.
Gao
,
F.
,
Cummings
,
M. L.
, and
Bertuccelli
,
L. F.
,
2012
, “
Teamwork in Controlling Multiple Robots
,” MIT Web Domain, https://dspace.mit.edu/handle/1721.1/81765. Accessed January 29, 2023.
49.
Walliser
,
J. C.
,
Mead
,
P. R.
, and
Shaw
,
T. H.
,
2017
, “
The Perception of Teamwork With an Autonomous Agent Enhances Affect and Performance Outcomes
,”
Proc. Hum. Factors Ergon. Soc. Annu. Meet.
,
61
(
1
), pp.
231
235
.
50.
Fan
,
X.
,
McNeese
,
M.
, and
Yen
,
J.
,
2010
, “
NDM-Based Cognitive Agents for Supporting Decision-Making Teams
,”
Hum.-Comput. Interact.
,
25
(
3
), pp.
195
234
.
51.
Azhar
,
M. Q.
, and
Sklar
,
E. I.
,
2017
, “
A Study Measuring the Impact of Shared Decision Making in a Human-Robot Team
,”
Int. J. Rob. Res.
,
36
(
5–7
), pp.
461
482
.
52.
Lewis
,
M.
,
Sycara
,
K.
, and
Payne
,
T. R.
,
2003
, “
Agent Roles in Human Teams
,”
Proceedings of the AAMAS-03 Workshop on Humans and Multi-Agent Systems
,
Melbourne, Australia
,
Jan. 1
, pp.
1
7
. https://eprints.soton.ac.uk/257737/. Accessed January 29, 2023.
53.
Larson
,
L.
, and
DeChurch
,
L. A.
,
2020
, “
Leading Teams in the Digital Age: Four Perspectives on Technology and What They Mean for Leading Teams
,”
Leadersh. Q.
,
31
(
1
), p.
101377
.
54.
Nass
,
C.
,
Fogg
,
B. J.
, and
Moon
,
Y.
,
1996
, “
Can Computers Be Teammates?
,”
Int. J. Hum-Comput. Stud.
,
45
(
6
), pp.
669
678
.
55.
Lyons
,
J.
,
Mahoney
,
S.
,
Wynne
,
K. T.
, and
Roebke
,
M. A.
,
2018
, “
Viewing Machines as Teammates: A Qualitative Study
,”
Proceedings of the AAAI Spring Symposia
,
Palo Alto, CA
,
March
. https://www.semanticscholar.org/paper/Viewing-Machines-as-Teammates:-A-Qualitative-Study-Lyons-Mahoney/965e8bb95cc2cc46b822b1a0f3fde5d8e99ffedb, Accessed January 29, 2023.
56.
Wynne
,
K. T.
, and
Lyons
,
J. B.
,
2018
, “
An Integrative Model of Autonomous Agent Teammate-Likeness
,”
Theor. Issues Ergon. Sci.
,
19
(
3
), pp.
353
374
.
57.
Kratzer
,
J.
,
Leenders
,
R. T.
, and
Van Engelen
,
J. M.
,
2010
, “
The Social Network Among Engineering Design Teams and Their Creativity: A Case Study Among Teams in Two Product Development Programs
,”
Int. J. Project Manage.
,
28
(
5
), pp.
428
436
.
58.
Wu
,
Q.
, and
Cormican
,
K.
,
2016
, “
Shared Leadership and Team Creativity: A Social Network Analysis in Engineering Design Teams
,”
J. Technol. Manage. Innov.
,
11
(
2
), pp.
2
12
.
59.
Hanna
,
N.
, and
Richards
,
D.
,
2013
, “
A Collaborative Activity for Evaluating HAT-COM: Human-Agent Teamwork Communication Model
,”
Proceedings of the Adaptive Agents and Multi-Agent Systems
,
St. Paul, MN
,
May
, pp.
1369
1370
. https://www.semanticscholar.org/paper/A-collaborative-activity-for-evaluating-HAT-COM%3A-Hanna-Richards/1ae65338c61042ee5e01f3b82f3218094560a9c6. Accessed January 29, 2023.
60.
Demir
,
M.
,
McNeese
,
N. J.
,
Cooke
,
N. J.
, and
Myers
,
C.
,
2016
, “
The Synthetic Teammate as a Team Player in Command-and-Control Teams
,”
Proc. Hum. Factors Ergon. Soc. Annu. Meet.
,
60
(
1
), pp.
116
116
.
61.
Sycara
,
K.
, and
Lewis
,
M.
,
2002
, “
Integrating Agents Into Human Teams
,”
Proc. Hum. Factors Ergon. Soc. Annu. Meet.
,
46
(
3
), pp.
413
417
.
62.
Soria Zurita
,
N. F.
,
Gyory
,
J. T.
,
Balon
,
C.
,
Martin
,
J.
,
Kotovsky
,
K.
,
Cagan
,
J.
, and
McComb
,
C.
,
2022
, “
Data on the Human Versus Artificial Intelligence Process Management Experiment
,”
Data in Br.
,
41
, p.
107917
.
63.
Hart
,
S. G.
,
2006
, “
Nasa-Task Load Index (NASA-TLX); 20 Years Later
,”
Proc. Hum. Factors Ergon. Soc. Annu. Meet.
,
50
(
9
), pp.
904
908
.
64.
Hart
,
S. G.
, and
Staveland
,
L. E.
,
1988
, “
Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research
,”
Adv. Psychol.
,
52
, pp.
139
183
.
65.
Gibson
,
C. B.
,
Zellmer-Bruhn
,
M. E.
, and
Schwab
,
D. P.
,
2003
, “
Team Effectiveness in Multinational Organizations: Evaluation Across Contexts
,”
Group Organ. Manag.
,
28
(
4
), pp.
444
474
.
66.
Schaefer
,
K. E.
,
2016
, “Measuring Trust in Human Robot Interactions: Development of the ‘Trust Perception Scale-HRI,’,”
Robust Intelligence and Trust in Autonomous Systems
,
R.
Mittu
,
D.
Sofge
,
A.
Wagner
, and
W. F.
Lawless
, eds.,
Springer US
,
Boston, MA
, pp.
191
218
.
67.
Wheelan
,
S. A.
, and
Hochberger
,
J. M.
,
1996
, “
Validation Studies of the Group Development Questionnaire
,”
Small Group Res.
,
27
(
1
), pp.
143
170
.
68.
Stump
,
G.
,
Lego
,
S.
,
Yukish
,
M.
,
Simpson
,
T. W.
, and
Donndelinger
,
J. A.
,
2009
, “
Visual Steering Commands for Trade Space Exploration: User-Guided Sampling With Example
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), p.
044501
.
69.
Yujian
,
L.
, and
Bo
,
L.
,
2007
, “
A Normalized Levenshtein Distance Metric
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
29
(
6
), pp.
1091
1095
.
70.
Stump
,
G. M.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C.
,
2019
, “
Spatial Grammar-Based Recurrent Neural Network for Design Form and Behavior Optimization
,”
ASME J. Mech. Des.
,
141
(
12
), p.
124501
.
71.
Nolte
,
H.
, and
McComb
,
C.
,
2021
, “
The Cognitive Experience of Engineering Design: an Examination of First-Year Student Stress Across Principal Activities of the Engineering Design Process
,”
Des. Sci.
,
7
(
3
), pp.
1
31
.
72.
Fong
,
T.
,
Scholtz
,
J.
,
Shah
,
J. A.
,
Fluckiger
,
L.
,
Kunz
,
C.
,
Lees
,
D.
,
Schreiner
,
J.
, et al
,
2006
, “
A Preliminary Study of Peer-to-Peer Human-Robot Interaction
,”
Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics
,
Taipei, Taiwan
,
Oct. 8–11
, pp.
3198
3203
.
73.
Stempfle
,
J.
, and
Badke-Schaub
,
P.
,
2002
, “
Thinking in Design Teams—An Analysis of Team Communication
,”
Des. Stud.
,
23
(
5
), pp.
473
496
.
74.
Balkundi
,
P.
, and
Harrison
,
D. A.
,
2006
, “
Ties, Leaders, And Time in Teams: Strong Inference About Network Structure's Effects On Team Viability And Performance
,”
Acad. Manage. J.
,
49
(
1
), pp.
49
68
.
75.
Scott
,
J.
, and
Carrington
,
P. J.
,
2011
,
The SAGE Handbook of Social Network Analysis
,
SAGE Publications
.
76.
Susskind
,
A. M.
, and
Odom-Reed
,
P. R.
,
2019
, “
Team Member's Centrality, Cohesion, Conflict, and Performance in Multi-University Geographically Distributed Project Teams
,”
Commun. Res.
,
46
(
2
), pp.
151
178
.
77.
Lei
,
S. I.
,
Shen
,
H.
, and
Ye
,
S.
,
2021
, “
A Comparison Between Chatbot and Human Service: Customer Perception and Reuse Intention
,”
Int. J. Contemp. Hosp. Manag.
,
33
(
11
), pp.
3977
3995
.
78.
Bansal
,
G.
,
Nushi
,
B.
,
Kamar
,
E.
,
Weld
,
D. S.
,
Lasecki
,
W. S.
, and
Horvitz
,
E.
,
2019
, “
Updates in Human-AI Teams: Understanding and Addressing the Performance/Compatibility Tradeoff
,”
Proc. AAAI Conf. Artif. Intell.
,
33
(
01
), pp.
2429
2437
.
79.
Edwards
,
A.
,
Edwards
,
C.
,
Westerman
,
D.
, and
Spence
,
P. R.
,
2019
, “
Initial Expectations, Interactions, and Beyond With Social Robots
,”
Comput. Hum. Behav.
,
90
, pp.
308
314
.
80.
Lyons
,
J. B.
,
Sycara
,
K.
,
Lewis
,
M.
, and
Capiola
,
A.
,
2021
, “
Human–Autonomy Teaming: Definitions, Debates, and Directions
,”
Front. Psychol.
,
12
, pp.
1
15
.
You do not currently have access to this content.