Abstract

This article aims at presenting a detailed and practical comparison between three designs of robotic soft fingers for industrial grippers. While the soft finger based on the fin ray effect (FRE) shown here has been proposed long ago, few works in the literature have studied its reliance on the presence of the crossbeams or its precision grasp performance compared to its power grasps. Aiming at addressing these gaps, two novel designs are proposed and compared to FRE fingers in this article. First, the three designs are presented. One of these fingers, named PacomeFlex, embeds changeable grasping modes by relying on two sets of kinematic structures with a bistable stopper design. Then, finite element analyses (FEA) are conducted to simulate power and precision grasps of the three fingers followed by the estimation of the grasp forces produced. These FEA are then used to train neural networks capable of predicting these grasp forces. Finally, the grasp strength and pullout resistance of the fingers are experimentally measured, and experimental results are shown to be in good accordance with the FEA and neural network models. As will also be shown, the PacomeFlex finger introduced in this work provides a noticeably higher performance level than all other fingers with respect to typical metrics in soft grasping.

References

1.
Laschi
,
C.
, and
Cianchetti
,
M.
,
2014
, “
Soft Robotics: New Perspectives for Robot Bodyware and Control
,”
Front. Bioeng. Biotechnol.
,
2
, pp.
1
5
.
2.
Pfeifer
,
R.
,
2013
, “
Soft Robotics: The Next Generation of Intelligent Machines
,”
IJCAI 13 Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence
,
Beijing, China
,
Aug. 3–9
, pp.
5
11
.
3.
Zhou
,
P.
,
Zhang
,
N.
, and
Gu
,
G.
,
2022
, “
A Biomimetic Soft–Rigid Hybrid Finger With Autonomous Lateral Stiffness Enhancement
,”
Adv. Intell. Syst.
,
4
(
12
), p.
2200170
.
4.
Gai
,
L.-J.
,
Zong
,
X.
, and
Huang
,
J.
,
2022
, “
Enhancing the Tensile-shaping Stability of Soft Elongation Actuators for Grasping Applications
,”
IEEE Rob. Autom. Lett.
,
8
(
2
), pp.
600
607
.
5.
Reuleaux
,
F.
, and
Kennedy
,
A.
,
1876
,
The Kinematics of Machinery: Outlines of a Theory of Machines
,
Macmillan
,
London, UK
.
6.
Bartholet
,
S. J.
,
1992
, “
Reconfigurable End Effector
,” 28, U.S. Patent No. 5,108,140.
7.
Gosselin
,
C. M.
, and
Laliberte
,
T.
,
1998
, “
Underactuated Mechanical Finger With Return Actuation
,” June 9, U.S. Patent No. 5,762,390.
8.
Birglen
,
L.
,
2014
, “
Self-Adaptive Mechanical Finger and Method
,” U.S. Patent No. 8,720,964.
9.
Ciocarlie
,
M.
,
Hicks
,
F. M.
,
Holmberg
,
R.
,
Hawke
,
J.
,
Schlicht
,
M.
,
Gee
,
J.
,
Stanford
,
S.
, and
Bahadur
,
R.
,
2014
, “
The Velo Gripper: A Versatile Single-Actuator Design for Enveloping, Parallel and Fingertip Grasps
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
753
767
.
10.
Goldfeder
,
C.
,
Ciocarlie
,
M.
,
Dang
,
H.
, and
Allen
,
P. K.
,
2009
, “
The Columbia Grasp Database
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
1710
1716
.
11.
Calli
,
B.
,
Walsman
,
A.
,
Singh
,
A.
,
Srinivasa
,
S.
,
Abbeel
,
P.
, and
Dollar
,
A. M.
,
2015
, “
Benchmarking in Manipulation Research: Using the Yale-CMU-Berkeley Object and Model Set
,”
IEEE Rob. Autom. Mag.
,
22
(
3
), pp.
36
52
.
12.
Mahler
,
J.
,
Liang
,
J.
,
Niyaz
,
S.
,
Laskey
,
M.
,
Doan
,
R.
,
Liu
,
X.
,
Aparicio
,
J.
, and
Goldberg
,
K.
,
2017
, “
Dex-net 2.0: Deep Learning to Plan Robust Grasps With Synthetic Point Clouds and Analytic Grasp Metrics
,”
Proceedings of Robotics: Science and Systems
,
Cambridge, MA
,
July 12–16
. https://arxiv.org/abs/1703.09312
13.
Carmel
,
M.
,
2013
, “
Soft Robotics: A Perspective—Current Trends and Prospects for the Future
,”
Soft Robotics
,
1
(
1
), pp.
5
11
.
14.
Bannasch
,
R.
, and
Kniese
,
L.
,
2012
, “
Manipulator Tool and Holding and/or Expanding Tool With at Least One Manipulator Tool
,” U.S. Patent No. 833,341,7B2.
15.
Jiaqiang
,
Y.
,
Fang
,
Y.
, and
Luquan
,
L.
,
2023
, “
Research on Effects of Different Internal Structures on the Grasping Performance of Fin Ray Soft Grippers
,”
Robotica
,
41
(
6
), pp.
1762
1777
.
16.
Shin
,
J.
,
Park
,
J.
,
Kim
,
D.
, and
Yoon
,
H.
,
2021
, “
A Universal Soft Gripper With the Optimized Fin Ray Finger
,”
Int. J. Precision Eng. Manuf.-Green Technol.
,
8
(
3
), pp.
889
899
.
17.
Liu
,
S. Q.
,
Ma
,
Y.
, and
Adelson
,
E. H.
,
2023
, “
Gelsight Baby Fin Ray: A Compact, Compliant, Flexible Finger With High-Resolution Tactile Sensing
,”
2023 IEEE International Conference on Soft Robotics (RoboSoft)
,
Marina Bay Sands, Singapore
,
Apr. 3–7
, pp.
1
8
.
18.
Shan
,
X.
, and
Birglen
,
L.
,
2020
, “
Modeling and Analysis of Soft Robotic Fingers Using the Fin Ray Effect
,”
Int. J. Rob. Res.
,
39
(
14
), pp.
1686
1705
.
19.
Pfaff
,
O.
,
Simeonov
,
S.
,
Cirovic
,
I.
, and
Stano
,
P.
,
2011
, “
Application of Finray Effect Approach for Production Process Automation
,”
Ann. Proc. DAAAM Int. 2011
,
22
(
1
), pp.
1247
1248
.
20.
Festo Gmbh
,
2017
, Adaptive Gripper Fingers dhas [online], https://www.festo.com/cat/en-gb gb/data/docENGB/PDF/EN/DHAS EN.PDF, Accessed January 2023.
21.
Birglen
,
L.
,
2015
, “
Enhancing Versatility and Safety of Industrial Grippers With Adaptive Robotic Fingers
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 3
, pp.
2911
2916
.
22.
Birglen
,
L.
,
2018
, “
Design of a Partially-Coupled Self-adaptive Robotic Finger Optimized for Collaborative Robots
,”
Auton. Rob.
,
43
(
2
), pp.
523
538
.
23.
Falco
,
J.
,
Wyk
,
K. V.
,
Liu
,
S.
, and
Carpin
,
S.
,
2015
, “
Grasping the Performance: Facilitating Replicable Performance Measures Via Benchmarking and Standardized Methodologies
,”
IEEE Rob. Autom. Mag.
,
22
(
4
), pp.
125
136
.
24.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Netw.
,
2
(
5
), pp.
359
366
.
25.
Hagan
,
M. T.
,
Demuth
,
H. B.
, and
Beale
,
M.
,
1997
,
Neural Network Design
,
PWS Publishing Co
,
Boston, MA
.
26.
Cybenko
,
G.
,
1989
, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control, Signals Syst.
,
2
(
4
), pp.
303
314
.
27.
Kragten
,
G. A.
,
Meijneke
,
C.
, and
Herder
,
J. L.
,
2010
, “
A Proposal for Benchmark Tests for Underactuated or Compliant Hands
,”
Mech. Sci.
,
1
(
1
), pp.
13
18
.
28.
Kragten
,
G. A.
, and
Herder
,
J. L.
,
2010
, “
The Ability of Underactuated Hands to Grasp and Hold Objects
,”
Mech. Mach. Theory.
,
45
(
3
), pp.
408
425
.
29.
Kragten
,
G. A.
,
Bosch
,
H. A.
,
van Dam
,
T.
,
Slobbe
,
J. A.
, and
Herder
,
J. L.
,
2009
, “
On the Effect of Contact Friction and Contact Compliance on the Grasp Performance of Underactuated Hands
,”
33rd Mechanisms and Robotics Conference, Parts A and B of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, Vol. 7, pp.
871
878
.
You do not currently have access to this content.