Abstract

Design representations play a pivotal role in the design process. In particular, design representations enable the formation of a shared understanding between team members, enhancing team performance. This paper explores the relationship between design representation modality (low-fidelity prototypes and sketches) and shared understanding among designers during communicative acts between design dyads. A mixed-methods study with 44 participants was conducted to investigate if representation modality affects shared understanding and identifies the factors that shape shared understanding during communication. Quantitative results suggest that low-fidelity prototypes and sketches did not significantly differ in terms of the shared understanding they facilitated within dyads. Qualitative analysis identified four factors at the representation- and actor-level that influence how shared understanding is built between individuals during design communication. This research extends our understanding of the utility of design representations given the needs of communicative contexts; specifically, this work demonstrates that designers must understand the perspectives of listeners during communication to create representations that accurately represent the information that a listener seeks to gain.

References

1.
Dong
,
A.
,
2005
, “
The Latent Semantic Approach to Studying Design Team Communication
,”
Des. Stud.
,
26
(
5
), pp.
445
461
.
2.
Fu
,
K.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2010
, “
Design Team Convergence: The Influence of Example Solution Quality
,”
ASME J. Mech. Des.
,
132
(
11
), p.
111005
.
3.
Deininger
,
M.
,
Daly
,
S. R.
,
Sienko
,
K. H.
, and
Lee
,
J. C.
,
2017
, “
Novice Designers’ Use of Prototypes in Engineering Design
,”
Des. Stud.
,
51
(
6
), pp.
25
65
.
4.
Nelson
,
J.
,
Mahan
,
T.
,
McComb
,
C.
, and
Menold
,
J.
,
2020
, “
The Prototyping Behaviors of Startups: Exploring the Relationship Between Prototyping Behaviors and Startup Strategies
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031107
.
5.
Aubé
,
C.
,
Rousseau
,
V.
, and
Tremblay
,
S.
,
2015
, “
Perceived Shared Understanding in Teams: The Motivational Effect of Being ‘on the Same Page
,”
Br. J. Psychol.
,
106
(
3
), pp.
468
486
.
6.
Das
,
M.
, and
Yang
,
M. C.
,
2022
, “
Assessing Early Stage Design Sketches and Reflections on Prototyping
,”
ASME J. Mech. Des.
,
144
(
4
), p.
041403
.
7.
Lauff
,
C. A.
,
Kotys-Schwartz
,
D.
, and
Rentschler
,
M. E.
,
2018
, “
What Is a Prototype? What Are the Roles of Prototypes in Companies?
ASME J. Mech. Des.
,
140
(
6
), p.
061102
.
8.
Menold
,
J.
,
Jablokow
,
K.
, and
Simpson
,
T.
,
2019
, “
The Prototype for X Framework: Assessing Impact on Self-Reported Prototyping Behavior of Student Designers
,”
ASME J. Mech. Des.
,
141
(
4
), p.
042001
.
9.
Nelson
,
J.
, and
Menold
,
J.
,
2021
, “
Between Worlds: Exploring the Links Between the Tangible and Intangible Costs of Prototypes
,”
ASME J. Mech. Des.
,
143
(
3
), p. 031402.
10.
Bucciarelli
,
L. L.
,
1988
, “
An Ethnographic Perspective on Engineering Design
,”
Des. Stud.
,
9
(
3
), pp.
159
168
.
11.
Lauff
,
C. A.
,
Knight
,
D.
,
Kotys-Schwartz
,
D.
, and
Rentschler
,
M. E.
,
2020
, “
The Role of Prototypes in Communication Between Stakeholders
,”
Des. Stud.
,
66
(
1
), pp.
1
34
.
12.
Viswanathan
,
V. K.
, and
Linsey
,
J. S.
,
2012
, “
Physical Models and Design Thinking: A Study of Functionality, Novelty and Variety of Ideas
,”
ASME J. Mech. Des.
,
134
(
9
), p.
091004
.
13.
Nelson
,
J.
,
Berlin
,
A.
, and
Menold
,
J.
,
2019
, “
Archie: An Automated Data Collection Method for Physical Prototyping Efforts in Authentic Design Situations
,”
Proceedings of the Volume 7: 31st International Conference on Design Theory and Methodology
,
Anaheim, CA
,
Aug. 18–21
, American Society of Mechanical Engineers, p. V007T06A044.
14.
Nolte
,
H.
, and
McComb
,
C.
,
2021
, “
The Cognitive Experience of Engineering Design: An Examination of First-Year Student Stress Across Principal Activities of the Engineering Design Process
,”
Des. Sci.
,
7
, p.
e3
.
15.
Hill
,
A.
,
Song
,
S.
,
Dong
,
A.
, and
Agogino
,
A.
,
2001
, “
Identifying Shared Understanding in Design Using Document Analysis
,”
Volume 4: 13th International Conference on Design Theory and Methodology
,
Pittsburgh, PA
,
Sept. 9–12
, American Society of Mechanical Engineers, pp.
309
315
.
16.
Kleinsmann
,
M.
,
Valkenburg
,
R.
, and
Buijs
,
J.
,
2007
, “
Why Do(n’t) Actors in Collaborative Design Understand Each Other? An Empirical Study Towards a Better Understanding of Collaborative Design
,”
CoDesign
,
3
(
1
), pp.
59
73
.
17.
Badke-Schaub
,
P.
,
Neumann
,
A.
,
Lauche
,
K.
, and
Mohammed
,
S.
,
2007
, “
Mental Models in Design Teams: A Valid Approach to Performance in Design Collaboration?
CoDesign
,
3
(
1
), pp.
5
20
.
18.
Kleinsmann
,
M.
,
Buijs
,
J.
, and
Valkenburg
,
R.
,
2010
, “
Understanding the Complexity of Knowledge Integration in Collaborative New Product Development Teams: A Case Study
,”
J. Eng. Technol. Manag.
,
27
(
1–2
), pp.
20
32
.
19.
Boujut
,
J. F.
, and
Blanco
,
E.
,
2003
, “
Intermediary Objects as a Means to Foster Co-Operation in Engineering Design
,”
Comput. Support. Coop. Work
,
12
(
2
), pp.
205
219
.
20.
Ferguson
,
E. S.
,
1977
, “
The Mind’s Eye: Nonverbal Thought in Technology
,”
Science
,
197
(
4306
), pp.
827
836
.
21.
Eckert
,
C.
, and
Stacey
,
M.
,
2000
, “
Sources of Inspiration: A Language of Design
,”
Des. Stud.
,
21
(
5
), pp.
525
538
.
22.
Lim
,
Y. K.
,
Stolterman
,
E.
, and
Tenenberg
,
J.
,
2008
, “
The Anatomy of Prototypes: Prototypes as Filters, Prototypes as Manifestations of Design Ideas
,”
ACM Trans. Comput. Hum. Interact.
,
15
(
2
), pp.
1
27
.
23.
Häggman
,
A.
,
Tsai
,
G.
,
Elsen
,
C.
,
Honda
,
T.
, and
Yang
,
M. C.
,
2015
, “
Connections Between the Design Tool, Design Attributes, and User Preferences in Early Stage Design
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071408
.
24.
Deininger
,
M.
,
Daly
,
S. R.
,
Lee
,
J. C.
,
Seifert
,
C. M.
, and
Sienko
,
K. H.
,
2019
, “
Prototyping for Context: Exploring Stakeholder Feedback Based on Prototype Type, Stakeholder Group and Question Type
,”
Res. Eng. Des.
,
30
(
4
), pp.
453
471
.
25.
Maier
,
A. M.
,
Eckert
,
C. M.
, and
Clarkson
,
P. J.
,
2005
, “
A Meta-Model for Communication in Engineering Design
,”
CoDesign
,
1
(
4
), pp.
243
254
.
26.
Schmidt
,
L. C.
,
Hernandez
,
N. V.
, and
Ruocco
,
A. L.
,
2012
, “
Research on Encouraging Sketching in Engineering Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
26
(
3
), pp.
303
315
.
27.
Rodgers
,
P. A.
,
Green
,
G.
, and
McGown
,
A.
,
2000
, “
Using Concept Sketches to Track Design Progress
,”
Des. Stud.
,
21
(
5
), pp.
451
464
.
28.
Gerber
,
E.
, and
Carroll
,
M.
,
2012
, “
The Psychological Experience of Prototyping
,”
Des. Stud.
,
33
(
1
), pp.
64
84
.
29.
Brandt
,
E.
,
2007
, “
How Tangible Mock-Ups Support Design Collaboration
,”
Knowl. Technol. Policy
,
20
(
3
), pp.
179
192
.
30.
Isa
,
S. S.
, and
Liem
,
A.
,
2021
, “
Exploring the Role of Physical Prototypes During Co-Creation Activities at LEGO Company Using Case Study Validation
,”
CoDesign
,
17
(
3
), pp.
330
354
.
31.
Kühl
,
T.
,
Scheiter
,
K.
,
Gerjets
,
P.
, and
Edelmann
,
J.
,
2011
, “
The Influence of Text Modality on Learning With Static and Dynamic Visualizations
,”
Comput. Hum. Behav.
,
27
(
1
), pp.
29
35
.
32.
Yang
,
M. C.
, and
Cham
,
J. G.
,
2007
, “
An Analysis of Sketching Skill and its Role in Early Stage Engineering Design
,”
ASME J. Mech. Des.
,
129
(
5
), pp.
476
482
.
33.
Preece
,
D.
,
Williams
,
S. B.
,
Lam
,
R.
, and
Weller
,
R.
,
2013
, “
‘Let’s Get Physical’: Advantages of a Physical Model Over 3D Computer Models and Textbooks in Learning Imaging Anatomy
,”
Anat. Sci. Educ.
,
6
(
4
), pp.
216
224
.
34.
Wu
,
H. K.
, and
Shah
,
P.
,
2004
, “
Exploring Visuospatial Thinking in Chemistry Learning
,”
Sci. Educ.
,
88
(
3
), pp.
465
492
.
35.
Bao
,
Q.
,
Faas
,
D.
, and
Yang
,
M.
,
2018
, “
Interplay of Sketching & Prototyping in Early Stage Product Design
,”
Int. J. Des. Creativity Innov.
,
6
(
3–4
), pp.
146
168
.
36.
Patel
,
A.
,
Elena
,
M. V.
, and
Summers
,
J.
,
2019
, “
A Systematic Approach to Evaluating Design Prompts in Supporting Experimental Design Research
,”
Proceedings of the Design Society: International Conference on Engineering Design
,
Delft University, The Netherlands
,
Aug. 5–8
.
37.
Charles
,
W. G.
,
2000
, “
Contextual Correlates of Meaning
,”
Appl. Psycholinguist
,
21
(
4
), pp.
505
524
.
38.
Nandy
,
A.
,
Dong
,
A.
, and
Goucher-Lambert
,
K.
,
2022
, “
Evaluating Quantitative Measures for Assessing Functional Similarity in Engineering Design
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031401
.
39.
Stone
,
R. B.
, and
Wood
,
K. L.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
.
40.
Soria Zurita
,
N. F.
,
Stone
,
R. B.
,
Demirel
,
O.
, and
Tumer
,
I. Y.
,
2018
, “
The Function-Human Error Design Method (FHEDM)
,”
Proceedings of the Volume 7: 30th International Conference on Design Theory and Methodology, American Society of Mechanical Engineers
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, p. V007T06A058.
41.
Soria Zurita
,
N. F.
,
Stone
,
R. B.
,
Onan Demirel
,
H.
, and
Tumer
,
I. Y.
,
2020
, “
Identification of Human-System Interaction Errors During Early Design Stages Using a Functional Basis Framework
,”
ASCE ASME J. Risk Uncertain. Eng. Syst. B Mech. Eng.
,
6
(
1
), p.
011005
.
42.
Soria Zurita
,
N. F.
,
Tensa
,
M. A.
,
Ferrero
,
V.
,
Stone
,
R. B.
,
DuPont
,
B.
,
Demirel
,
H. O.
, and
Tumer
,
I. Y.
,
2022
, “
Uncovering Human Errors Associated With System-User Interactions Using Functional Modeling
,”
ASME J. Mech. Des.
,
144
(
8
), p.
081401
.
43.
Ioffe
,
S.
,
2010
, “
Improved Consistent Sampling, Weighted Minhash and L1 Sketching
,”
Proceedings—IEEE International Conference on Data Mining, ICDM
,
Sydney, Australia
,
Dec. 13–17
, pp.
246
255
.
44.
Ameri
,
F.
,
Summers
,
J. D.
,
Mocko
,
G. M.
, and
Porter
,
M.
,
2008
, “
Engineering Design Complexity: An Investigation of Methods and Measures
,”
Res. Eng. Des.
,
19
(
2
), pp.
161
179
.
45.
Giddings
,
L. S.
, and
Grant
,
B. M.
,
2006
, “
Mixed Methods Research for the Novice Researcher
,”
Contemp. Nurse
,
23
(
1
), pp.
3
11
.
46.
Charmaz
,
K.
,
2006
,
Constructing Grounded Theory. A Practical Guide Through Qualitative Analysis
,
SAGE
,
London
.
47.
Timmermans
,
S.
, and
Tavory
,
I.
,
2012
, “
Theory Construction in Qualitative Research: From Grounded Theory to Abductive Analysis
,”
Soc. Theory
,
30
(
3
), pp.
167
186
.
48.
Carlile
,
P. R.
,
2002
, “
A Pragmatic View of Knowledge and Boundaries: Boundary Objects in New Product Development
,”
Org. Sci.
,
13
(
4
), pp.
442
455
.
49.
Broberg
,
O.
,
Andersen
,
V.
, and
Seim
,
R.
,
2011
, “
Participatory Ergonomics in Design Processes: The Role of Boundary Objects
,”
Appl. Ergon.
,
42
(
3
), pp.
464
472
.
50.
Cash
,
P.
,
Dekoninck
,
E. A.
, and
Ahmed-Kristensen
,
S.
,
2017
, “
Supporting the Development of Shared Understanding in Distributed Design Teams
,”
J. Eng. Des.
,
28
(
3
), pp.
147
170
.
51.
Darling
,
A. L.
, and
Dannels
,
D. P.
,
2003
, “
Practicing Engineers Talk About the Importance of Talk: A Report on the Role of Oral Communication in the Workplace
,”
Commun. Educ.
,
52
(
1
), pp.
1
16
.
52.
Swales
,
J. M.
,
Barks
,
D.
,
Ostermann
,
A. C.
, and
Simpson
,
R. C.
,
2001
, “
Between Critique and Accommodation: Reflections on an EAP Course for Masters of Architecture Students
,”
English Specif. Purp.
,
20
(
1
), pp.
439
458
.
53.
Lee
,
J.
,
1997
, “
Design Rationale Systems: Understanding the Issues
,”
IEEE Expert Intell. Syst. Appl.
,
12
(
3
), pp.
78
85
.
54.
McKerlie
,
D.
, and
MacLean
,
A.
,
1994
, “
Reasoning With Design Rationale: Practical Experience With Design Space Analysis
,”
Des. Stud.
,
15
(
2
), pp.
214
226
.
55.
Krishnakumar
,
S.
, and
Menold
,
J.
,
2022
, “
Investigating the Effect of Design Representation Modality on Design Communication
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 21–25
.
56.
Krishnakumar
,
S.
,
Berdanier
,
C.
,
McComb
,
C.
, and
Menold
,
J.
,
2021
, “
Lost in Translation: Examining the Complex Relationship Between Prototyping and Communication
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091402
.
You do not currently have access to this content.