Abstract

Cable-driven serial robots have emerged with high potential for wide applications due to their compact size and low inertia properties. However, developing this type of robot encounters a motion coupling issue that the movement of one joint leads to the motion of other joints, resulting in complex control. In this paper, we proposed a novel approach for motion decoupling based on a noncircular pulley. The length change of the driving cable caused by the motion coupling problem is resolved by using the noncircular pulley. The calculation process of the profile for the noncircular pulley is illustrated in detail. An optimization process based on the brute force method is presented to identify the optimal parameters to minimize the compensation error. A cable-driven serial robot based on the decoupling method is prototyped for assessments. Experiments are conducted to evaluate the performance of the proposed motion decoupling method. The results reveal that the proposed method can effectively resolve the motion coupling issue by maintaining almost constant cable length with a maximum accumulative error only as 0.086 mm, demonstrating the effectiveness of the method.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Tan
,
N.
,
Clevy
,
C.
,
Laurent
,
G. J.
,
Sandoz
,
P.
, and
Chaillet
,
N.
,
2015
, “
Accuracy Quantification and Improvement of Serial Micropositioning Robots for In-Plane Motions
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1497
1507
.
2.
Jiang
,
Z.
,
Zhou
,
W.
,
Li
,
H.
,
Mo
,
Y.
,
Ni
,
W.
, and
Huang
,
Q.
,
2018
, “
A New Kind of Accurate Calibration Method for Robotic Kinematic Parameters Based on the Extended Kalman and Particle Filter Algorithm
,”
IEEE Trans. Ind. Electron.
,
65
(
4
), pp.
3337
3345
.
3.
Li
,
Y.
, and
Zhu
,
H.
,
2018
, “
A Simple Optimization Method for the Design of a Lightweight, Explosion-Proof Housing for a Coal Mine Rescue Robot
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
7
), pp.
1
10
.
4.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
John Wiley & Sons
,
Hoboken, NJ
.
5.
Pandilov
,
Z.
, and
Dukovski
,
V.
,
2014
, “
Comparison of the Characteristics Between Serial and Parallel Robots
,”
Acta Tech. Corvin., Bull. Eng.
,
7
(
1
), pp.
143
160
.
6.
Slamani
,
M.
, and
Chatelain
,
J.-F.
,
2015
, “
Issues and Challenges in Robotic Trimming of CFRP
,”
Proceedings of the 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO)
,
Colmar, France
,
July 21–23
, IEEE, pp.
400
405
.
7.
Sanan
,
S.
,
Lynn
,
P. S.
, and
Griffith
,
S. T.
,
2014
, “
Pneumatic Torsional Actuators for Inflatable Robots
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031003
.
8.
Wu
,
G.
, and
Shen
,
H.
,
2021
, “
Parallel PnP Robots
,”
Res. Intell. Manuf.
,
7
(
8
), pp.
87
120
.
9.
Gupta
,
V.
,
Saha
,
S. K.
, and
Chaudhary
,
H.
,
2019
, “
Optimum Design of Serial Robots
,”
ASME J. Mech. Des.
,
141
(
8
), p.
082303
.
10.
Lee
,
D.
,
Park
,
J. W.
, and
Seo
,
T.
,
2016
, “
Low-Inertia Serial Manipulator With Counterbalance Mechanism
,”
Proceedings of the 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI
,
Xi'an, China
,
Aug. 19–22
, pp.
369
370
.
11.
Agrawal
,
S. K.
, and
Fattah
,
A.
,
2004
, “
Gravity-Balancing of Spatial Robotic Manipulators
,”
Mech. Mach. Theory
,
39
(
12
), pp.
1331
1344
.
12.
Nguyen
,
V. L.
,
2022
, “
A Design Approach for Gravity Compensators Using Planar Four-Bar Mechanisms and a Linear Spring
,”
Mech. Mach. Theory
,
172
(
6
), p.
104770
.
13.
Arakelian
,
V.
, and
Briot
,
S.
,
2015
,
Balancing of Linkages and Robot Manipulators: Advanced Methods With Illustrative Examples
,
Springer
,
New York
.
14.
Jamshidifar
,
H.
,
Khajepour
,
A.
,
Sun
,
T.
,
Schmitz
,
N.
,
Jalali
,
S.
,
Topor-Gosman
,
R.
, and
Dong
,
J.
,
2021
, “
A Novel Mechanism for Gravity-Balancing of Serial Robots With High-Dexterity Applications
,”
IEEE Trans. Med. Robot. Bionics
,
3
(
3
), pp.
750
761
.
15.
Kolarski
,
M.
,
Vukobratović
,
M.
, and
Borovac
,
B.
,
1994
, “
Dynamic Analysis of Balanced Robot Mechanisms
,”
Mech. Mach. Theory
,
29
(
3
), pp.
427
454
.
16.
Chowdhury
,
A. M. M. B.
,
Cheng
,
J.
,
Yu
,
D.
, and
Shen
,
T.
,
2022
, “
Development of a Self-Decoupled Wire-Driven Robotic Universal Joint Toward Medical Application
,”
Proceedings of the 2022 Design of Medical Devices Conference, DMD
,
Minneapolis, MN
,
Apr. 11–14
,
p. V001T07A001
.
17.
Tzemanaki
,
A.
,
Fracczak
,
L.
,
Gillatt
,
D.
,
Koupparis
,
A.
,
Melhuish
,
C.
,
Persad
,
R.
,
Rowe
,
E.
,
Pipe
,
A. G.
, and
Dogramadzi
,
S.
,
2016
, “
Design of a Multi-DOF Cable-Driven Mechanism of a Miniature Serial Manipulator for Robot-Assisted Minimally Invasive Surgery
,”
Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Singapore
,
June 26–29
, pp.
55
60
.
18.
Wang
,
Y.
,
Cao
,
Q.
,
Zhu
,
X.
, and
Wang
,
P.
,
2021
, “
A Cable-Driven Distal End-Effector Mechanism for Single-Port Robotic Surgery
,”
Int. J. Comput. Assist. Radiol. Surg.
,
16
(
2
), pp.
301
309
.
19.
Bryson
,
J. T.
,
Jin
,
X.
, and
Agrawal
,
S. K.
,
2016
, “
Optimal Design of Cable-Driven Manipulators Using Particle Swarm Optimization
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041003
.
20.
Shen
,
T.
,
Nelson
,
C. A.
, and
Bradley
,
J.
,
2018
, “
Design of a Model-Free Cross-Coupled Controller With Application to Robotic NOTES
,”
J. Intell. Robot. Syst.
,
95
(
2
), pp.
473
489
.
21.
Mei
,
F.
,
Yili
,
F.
,
Bo
,
P.
, and
Xudong
,
Z.
,
2012
, “
An Improved Surgical Instrument Without Coupled Motions That Can Be Used in Robotic-Assisted Minimally Invasive Surgery
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
226
(
8
), pp.
623
630
.
22.
Quigley
,
M.
,
Asbeck
,
A.
, and
Ng
,
A.
,
2011
, “
A Low-Cost Compliant 7-DOF Robotic Manipulator
,”
Proceedings of the IEEE Intertnational Conference on Robot Automation
,
Shanghai, China
,
May 9–13
, pp.
6051
6058
.
23.
Chen
,
W.
,
Dong
,
L.
,
Zhang
,
J.
, and
Wu
,
X.
,
2007
, “
Tension Analysis for a Cable-Driven 7-DOF Manipulator
,”
Proceedings of the ICIEA 2007: 2007s IEEE Conference on Industrial Electronics and Applications
,
Harbin, China
,
May 23–25
, pp.
862
867
.
24.
Chen
,
W.
,
Chen
,
Q.
,
Liu
,
R.
, and
Zhang
,
J.
,
2012
, “
Homing Algorithm Analysis for a Cable-Driven 3-DOF Shoulder Joint
,”
Proceedings of the IEEE International Conference on Industrial Informatics (INDIN)
,
Beijing, China
,
July 25–27
, pp.
1170
1175
.
25.
Sang
,
H.
,
Meng
,
J.
, and
Yun
,
J.
,
2011
, “
Kinematic Analysis of a Class of Multi-DOF Tendon-Driven Minimally Invasive Surgical Instruments
,”
Proceedings of 2011 International Conference on Computer Science and Network Technology, ICCSNT
,
Harbin, China
,
Dec. 24–26
, pp.
607
612
.
26.
Lee
,
J. K.
,
Choi
,
C. H.
,
Yoon
,
H.
,
Lee
,
H. J.
,
Park
,
S.
, and
Yoon
,
J. S.
, “
Design and Evaluation of Cable-Driven Manipulator With Motion-Decoupled Joints
,”
Proceedings of the 2008 International Conference on Smart Manufacturing Application
,
Goyangi, Korea
,
Apr. 9–11
, IEEE, pp.
575
580
.
27.
Liang
,
Y.
,
Du
,
Z.
,
Wang
,
W.
,
Yan
,
Z.
, and
Sun
,
L.
,
2019
, “
An Improved Scheme for Eliminating the Coupled Motion of Surgical Instruments Used in Laparoscopic Surgical Robots
,”
Rob Auton Syst
,
112
(
2
), pp.
49
59
.
28.
Glachet
,
C. G. J.-P.
,
Pontchartrain
,
J.
, and
Vertut
,
J
,
1973
, “
Remote Manipulator
,”
U.S. Patent No. US3817403A
,
817
(
3
), p.
403
.
29.
Lee
,
J. K.
,
Choi
,
C. H.
,
Yoon
,
K. H.
,
Park
,
B. S.
, and
Yoon
,
J. S.
,
2008
, “
Design of a Servomanipulator With Tendon Transmission
,”
Proceedings of the 2008 International Conference on Control, Automation and Systems, ICCAS
,
Seoul, South Korea
,
Oct. 14–17
, pp.
1653
1656
.
30.
Rodriguez-Cianca
,
D.
,
Verstraten
,
T.
,
Rodriguez-Guerrero
,
C.
,
Jimenez-Fabian
,
R.
,
Naef
,
M. B.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2020
, “
The Two-Degree-of-Freedom Cable Pulley (2DCP) Transmission System: An Under-Actuated and Motion Decoupled Transmission for Robotic Applications
,”
Mech. Mach. Theory
,
148
(
6
), p.
103765
.
31.
Fedorov
,
D.
, and
Birglen
,
L.
,
2018
, “
Differential Noncircular Pulleys for Cable Robots and Static Balancing
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061001
.
32.
Cheng
,
J.
, and
Shen
,
T.
,
2023
, “
Motion Decoupling for Cable-Driven Serial Robots Based on a Noncircular Pulley
,”
Proceedings of the 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Seattle, WA
,
June 28–30
, IEEE, pp.
739
745
.
33.
Robinson
,
A. C.
, and
Quinn
,
S. D.
,
2018
, “
A Brute Force Method for Spatially-Enhanced Multivariate Facet Analysis
,”
Comput. Environ. Urban Syst.
,
69
(
5
), pp.
28
38
.
34.
Jiang
,
S.
,
Hua
,
D.
,
Wang
,
Y.
,
Ju
,
F.
,
Yin
,
L.
, and
Chen
,
B.
,
2018
, “
Design and Modeling of Motion-Decoupling Mechanism for Cable-Driven Joints
,”
Adv. Mech. Eng.
,
10
(
5
), pp.
1
10
.
35.
Jiang
,
S.
,
Wang
,
Y.
,
Li
,
B.
,
Chen
,
B.
, and
Hua
,
D.
,
2019
, “
Design and Verification of a Novel Motion-Decoupled Cable-Driven Manipulator
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
234
(
6
), pp.
690
700
.
You do not currently have access to this content.