Abstract

This paper proposes a general method to generate spherical conjugated curves based on their contact path. The main objective of generating conjugated curves is to use them as gearing tooth profiles. The derivation is based on the prescribed spherical contact path, the equation of meshing, and the rigid body motion between two bodies. This paper demonstrates the method by assigning great circle and small circle contact paths in circular pitch pair transmission to generate conjugated curves. With the great circle contact path, the conjugated curves are exact spherical involute, and with the small circle contact path, the conjugated curves are spherical cycloid. The contact properties of the conjugated curves, such as induced curvature and the sliding ratio, are also provided with mathematical equations. Based on the results, the procedures and the geometries between the planar and spherical contact path methods have corresponding relationships. In contrast to the Camus theorem, the exact spherical involute could be generated from a similar procedure of planar involute cases. The ultimate goal of this research topic is to propose a general approach to generating conjugated profiles in planar, spherical, and spatial cases. The successful derivation of the spherical cases in this paper paves the way for spatial cases in the future.

References

1.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
,
Cambridge University Press
,
Cambridge
.
2.
Litvin
,
F. L.
,
1989
, “
Theory of Gearing
,”
Tech. Rep.
,
Washington, DC.
3.
Dudley
,
D. W.
,
1991
,
Dudley’s Gear Handbook
,
Tata McGraw-Hill Education
,
Boca Raton
.
4.
Wildhaber
,
E.
, and
Mach
,
A.
,
1946
, “
Conjugate Pitch Surfaces
,”
Am. Machinist
,
90
(
13
), pp.
150
152
.
5.
Dooner
,
D. B.
,
1995
,
The Kinematic Geometry of Gearing: A Concurrent Engineering Approach
, Vol.
3
,
John Wiley & Sons
,
New York
.
6.
Camus
,
C. E. L.
,
1759
,
Cours de Mathematique: Elements de Mecanique Statique
, Vol.
2
,
Durand
,
Paris
.
7.
Mitome
,
K.
, and
Seki
,
K.
,
1983
, “
A New Continuous Contact Low-Noise Gear Pump
,”
J. Mech. Transmissions Autom. Des.
,
105
(
4
), pp.
736
741
.
8.
Dong
,
H.
,
Ting
,
K.-L.
,
Yu
,
B.
,
Liu
,
J.
, and
Wang
,
D.
,
2012
, “
Differential Contact Path and Conjugate Properties of Planar Gearing Transmission
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061010
.
9.
Yang
,
D. C.
,
Tong
,
S.-H.
, and
Lin
,
J.
,
1999
, “
Deviation-Function Based Pitch Curve Modification for Conjugate Pair Design
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
579
586
.
10.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2016
, “
A Spatial Version of Octoidal Gears Via the Generalized Camus Theorem
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021015
.
11.
Huston
,
R.
, and
Coy
,
J.
,
1981
, “
Ideal Spiral Bevel Gears—A New Approach to Surface Geometry
,”
ASME J. Mech. Des.
,
103
(
1
), pp.
127
132
.
12.
Tsai
,
Y.
, and
Chin
,
P.
,
1987
, “
Surface Geometry of Straight and Spiral Bevel Gears
,”
J. Mech. Trans. Autom.
,
109
(
4
), pp.
443
449
.
13.
Al-Daccak
,
M.
,
Angeles
,
J.
, and
González Palacios
,
M.
,
1994
, “
The Modeling of Bevel Gears Using the Exact Spherical Involute
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
364
368
.
14.
Lee
,
H.
,
Lee
,
K.
, and
Chung
,
D.
,
2010
, “
A Kinematic Investigation of a Spherical Involute Bevel-Geared System
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
224
(
6
), pp.
1335
1348
.
15.
Figliolini
,
G.
, and
Angeles
,
J.
,
2005
, “
Algorithms for Involute and Octoidal Bevel-Gear Generation
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
664
672
.
16.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2007
, “
A New Look at the Ball–Disteli Diagram and Its Relevance to Spatial Gearing
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1362
1375
.
17.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2009
, “
The Computational Fundamentals of Spatial Cycloidal Gearing
,”
Computational Kinematics
,
Berlin/Heidelberg
,
May 20
, Springer, pp.
375
384
.
18.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2013
, “
On Martin Disteli’s Spatial Cycloidal Gearing
,”
Mech. Mach. Theory
,
60
, pp.
73
89
.
19.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2015
, “
The Role of the Orthogonal Helicoid in the Generation of the Tooth Flanks of Involute-Gear Pairs With Skew Axes
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011003
.
20.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2019
, “
Kinematic Properties of Planar and Spherical Logarithmic Spirals: Applications to the Synthesis of Involute Tooth Profiles
,”
Mech. Mach. Theory
,
136
, pp.
14
26
.
21.
Sung
,
L.
, and
Tsai
,
Y.
,
1997
, “
A Study on the Mathematical Models and Contact Ratios of Extended Cycloid and Cycloid Bevel Gear Sets
,”
Mech. Mach. Theory
,
32
(
1
), pp.
39
50
.
22.
Do Carmo
,
M. P.
,
2016
,
Differential Geometry of Curves and Surfaces: Revised and Updated
, 2nd ed.,
Courier Dover Publications
,
Englewood Cliffs, NJ
.
23.
Burke
,
W. L.
,
Burke
,
W. L.
, and
Burke
,
W. L.
,
1985
,
Applied Differential Geometry
,
Cambridge University Press
,
Cambridge
.
24.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
25.
Hartenberg
,
R.
, and
Danavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.