Abstract

This article presents a new family of kinematically redundant parallel mechanisms (KR-PMs) with two rotations and one translation (2R1T) based on the Lie group method. Compared with the 2-UPR/RPU PM, these PMs have two main advantages, namely, larger reachable workspaces of the moving platforms and higher motion/force transmission performance, as verified by three typical cases. The inverse kinematics, velocities, singularities, and workspaces of the 2-UPR/PRPU PM are analyzed in detail. A new method for motion/force transmission performance evaluation of KR-PMs in accordance with the indices for nonredundant PMs is proposed. Moreover, the local and global motion/force transmission performances of the 2-UPR/PRPU PM are determined using the new method.

References

1.
Merlet
,
J. P.
,
2006
,
Parallel Robots
,
Springer
,
New York
.
2.
Huang
,
Z.
,
Kong
,
L. F.
, and
Fang
,
Y. F.
,
1997
,
Mechanism Theory of Parallel Robotic Manipulator and Control
,
China Machine Press
,
Beijing
(in Chinese).
3.
Huang
,
Z.
,
Li
,
Q. C.
, and
Ding
,
H.
,
2013
,
Theory of Parallel Mechanisms
,
Springer
,
Netherlands
.
4.
Wahl
,
J.
,
2002
, “
Articulated Tool Head
,” U.S. Patent No. 6431802.
5.
Siciliano
,
B.
,
1999
, “
The Tricept Robot: Inverse Kinematics, Manipulability Analysis and Closed-Loop Direct Kinematics Algorithm
,”
Robotica
,
17
(
4
), pp.
437
445
.
6.
Bi
,
Z. M.
, and
Jin
,
Y.
,
2011
, “
Kinematic Modeling of Exechon Parallel Kinematic Machine
,”
Rob. Comput. Integr. Manuf.
,
27
(
1
), pp.
186
193
.
7.
Kong
,
X. W.
, and
Gosselin
,
C. M.
,
2006
,
Type Synthesis of Three-DOF UP-Equivalent Parallel Manipulators Using a Virtual-Chain Approach
,
Springer
,
Dordrecht
.
8.
Li
,
M.
,
Huang
,
T.
,
Chetwynd
,
D. G.
, and
Hu
,
J.
,
2006
, “
Forward Position Analysis of the 3-DOF Module of the TriVariant: A 5-DOF Reconfigurable Hybrid Robot
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
319
322
.
9.
Li
,
Y. G.
,
Liu
,
H. T.
,
Zhao
,
X. M.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2010
, “
Design of a 3-DOF PKM Module for Large Structural Component Machining
,”
Mech. Mach. Theory
,
45
(
6
), pp.
941
954
.
10.
Ye
,
W.
,
Li
,
Q. C.
, and
Chai
,
X. X.
,
2018
, “
New Family of 3-DOF UP-Equivalent Parallel Mechanisms With High Rotational Capability
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp.
57
68
.
11.
Hunt
,
K. H.
,
1983
, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
ASME J. Mech. Des.
,
105
(
4
), pp.
705
712
.
12.
Huang
,
T.
, and
Liu
,
H.
,
2010
, “
Parallel Mechanism Having Two Rotational and One Translational Degrees of Freedom
,” U.S. Patent No. 7793564.
13.
Huang
,
T.
,
Li
,
M.
,
Zhao
,
X. M.
,
Mei
,
J. P.
,
Chetwynd
,
D. G.
, and
Hu
,
S. J.
,
2005
, “
Conceptual Design and Dimensional Synthesis for a 3-DOF Module of the TriVariant—A Novel 5-DOF Reconfigurable Hybrid Robot
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
449
456
.
14.
Chen
,
X.
,
Liu
,
X. J.
,
Xie
,
F. G.
, and
Sun
,
T.
,
2014
, “
A Comparison Study on Motion/Force Transmissibility of Two Typical 3-DOF Parallel Manipulators: The Sprint Z3 and A3 Tool Heads
,”
Int. J. Adv. Manuf. Technol.
,
11
(
5
), pp.
1
10
.
15.
Li
,
Q. C.
, and
Hervé
,
J. M.
,
2010
, “
1T2R Parallel Mechanisms Without Parasitic Motion
,”
IEEE Trans. Rob.
,
26
(
3
), pp.
401
410
.
16.
Xie
,
F. G.
,
Liu
,
X. J.
, and
Wang
,
J. S.
,
2012
, “
A 3-DOF Parallel Manufacturing Module and Its Kinematic Optimization
,”
Rob. Comput. Integr. Manuf.
,
28
(
3
), pp.
334
343
.
17.
Xie
,
F. G.
,
Liu
,
X. J.
, and
Li
,
T. M.
,
2013
, “
A Comparison Study on the Orientation Capability and Parasitic Motions of Two Novel Articulated Tool Heads With Parallel Kinematics
,”
Adv. Mech. Eng.
,
5
(
6
), p.
249103
.
18.
Li
,
Q. C.
, and
Hervé
,
J. M.
,
2014
, “
Type Synthesis of 3-DOF RPR-Equivalent Parallel Mechanisms
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1333
1343
.
19.
Wang
,
J.
, and
Gosselin
,
C. M.
,
2004
, “
Kinematic Analysis and Design of Kinematically Redundant Parallel Mechanisms
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
109
118
.
20.
Gosselin
,
C. M.
, and
Schreiber
,
L. T.
,
2016
, “
Kinematically Redundant Spatial Parallel Mechanisms for Singularity Avoidance and Large Orientational Workspace
,”
IEEE Trans. Rob.
,
32
(
2
), pp.
286
300
.
21.
Lacombe
,
J.
, and
Gosselin
,
C. M.
,
2021
, “
Singularity Analysis of a Kinematically Redundant (6+2)–DOF Parallel Mechanism for Zero-Torsion Configurations
,”
Mech. Mach. Theory
,
170
(
1
), p.
104682
.
22.
Wen
,
K. F.
,
Nguyen
,
T. S.
,
Harton
,
D.
,
Laliberte
,
T.
, and
Gosselin
,
C. M.
,
2020
, “
A Backdrivable Kinematically Redundant (6+3)-Degree-of-Freedom Hybrid Parallel Robot for Intuitive Sensorless Physical Human–Robot Interaction
,”
IEEE Trans. Rob.
,
99
(
4
), pp.
1
17
.
23.
Zhang
,
D. S.
,
Xu
,
Y. D.
,
Yao
,
J. T.
,
Hu
,
B.
, and
Zhao
,
Y. S.
,
2017
, “
Kinematics, Dynamics and Stiffness Analysis of a Novel 3-DOF Kinematically/Actuation Redundant Planar Parallel Mechanism
,”
Mech. Mach. Theory
,
116
(
4
), pp.
203
219
.
24.
Qu
,
H. B.
, and
Guo
,
S.
,
2017
, “
Kinematics Analysis of a Novel Planar Parallel Manipulator With Kinematic Redundancy
,”
J. Mech. Sci. Technol.
,
31
(
4
), pp.
1927
1935
.
25.
Guo
,
S.
, and
Qu
,
H. B.
,
2016
,
Structural Synthesis of Redundant Parallel Robots and Its Applications
,
Science Press
,
Beijing
.
26.
Qu
,
H. B.
,
Zhang
,
C. L.
, and
Guo
,
S.
,
2018
, “
Structural Synthesis of a Class of Kinematically Redundant Parallel Manipulators Based on Modified G–K Criterion and RDOF Criterion
,”
Mech. Mach. Theory
,
130
(
8
), pp.
47
70
.
27.
Ball
,
R. S.
,
1998
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
New York
.
28.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1989
, “
The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator
,”
ASME J. Mech. Des.
,
111
(
2
), pp.
202
207
.
29.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
30.
Wang
,
J. S.
,
Wu
,
C.
, and
Liu
,
X. J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
31.
Wu
,
C.
,
Liu
,
X. J.
,
Wang
,
L. P.
, and
Wang
,
J. S.
,
2010
, “
Optimal Design of Spherical 5R Parallel Manipulators Considering the Motion/Force Transmissibility
,”
ASME J. Mech. Des.
,
132
(
3
), p.
031002
.
32.
Xie
,
F. G.
,
Liu
,
X. J.
, and
Wang
,
J. S.
,
2011
, “
Performance Evaluation of Redundant Parallel Manipulators Assimilating Motion/Force Transmissibility
,”
Int. J. Adv. Rob. Syst.
,
8
(
5
), pp.
113
124
.
33.
Li
,
Q. C.
,
Huang
,
Z.
, and
Hervé
,
J. M.
,
2004
, “
Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
173
180
.
34.
Li
,
Q. C.
,
Huang
,
Z.
, and
Hervé
,
J. M.
,
2004
, “
Displacement Manifold Method for Type Synthesis of Lower-Mobility Parallel Mechanisms
,”
Sci. China
,
47
(
6
), pp.
641
650
.
35.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
36.
Xu
,
L. M.
,
Li
,
Q. C.
,
Zhang
,
N. B.
, and
Chen
,
Q. H.
,
2017
, “
Mobility, Kinematic Analysis, and Dimensional Optimization of New Three-Degrees-of-Freedom Parallel Manipulator With Actuation Redundancy
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041008
.
You do not currently have access to this content.