Abstract

In the traditional customized product (CP) configuration design system, the configuration rules in the database usually rely on the manual input and maintenance of experienced designers. In complex product design, configuration rules are numerous, complex, and difficult to understand. The way of human input based on experience consumes plenty of resources, which are strictly limited by experienced designers. This overreliance on those experienced designers has seriously restricted the development of enterprises. To address this problem, a least recently used dynamic decision tree (LRU-DDT) algorithm for CP configuration rule intelligent extraction and dynamic updating is put forward in this article. Based on the decision table majority (DTM) classifier, the condition attributes are first reduced. An improved J48 decision tree algorithm is proposed to extract the CP configuration rules. In addition, the CP configuration rules can be dynamically updated based on LRU-DDT. To verify the proposed method, the GB10 high-speed elevator configuration design process is taken as an example. The configuration rules are extracted and updated by the proposed algorithms. The results show that the configuration solution efficiency is improved by 16%.

References

1.
Fogliatto
,
F. S.
,
da Silveira
,
G
.
J. C.
, and
Denis
,
B.
,
2012
, “
The Mass Customization Decade: An Updated Review of the Literature
,”
Int. J. Prod. Econ.
,
138
(
1
), pp.
14
25
.
2.
Wei
,
W.
,
Fan
,
W.
, and
Li
,
Z.
,
2014
, “
Multi-Objective Optimization and Evaluation Method of Modular Product Configuration Design Scheme
,”
Int. J. Adv. Manuf. Technol.
,
75
(
9
), pp.
1527
1536
.
3.
Zhang
,
L.
,
2014
, “
Product Configuration: a Review of the State-of-the-Art and Future Research
,”
Int. J. Prod. Res.
,
52
(
21
), pp.
6381
6398
.
4.
Shen
,
J.
,
Bin
,
W.
, and
Li
,
Y.
,
2015
, “
Personalized Configuration Rules Extraction in Product Service Systems by Using Local Cluster Neural Network
,”
Ind. Manag. Data Syst.
,
115
(
8
), pp.
1529
1546
.
5.
Kott
,
A.
,
Agin
,
G.
, and
Fawcett
,
D.
,
1992
, “
Configuration Tree Solver—A Technology for Automated Design and Configuration
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
187
195
.
6.
Yang
,
D.
,
Dong
,
M.
, and
Miao
,
R.
,
2008
, “
Development of a Product Configuration System With an Ontology-Based Approach
,”
Comput. Aided Des.
,
40
(
8
), pp.
863
878
.
7.
Soloway
,
E.
,
Bachant
,
J.
, and
Jensen
,
K.
,
1987
, “
Assessing the Maintainability of XCON-in-RIME: Coping With the Problems of a VERY Large Rule-Base
,”
Proceedings of the 6th National Conference on Artificial Intelligence
,
Seattle, WA
,
May 4–6
.
8.
McDermott
,
J.
,
1982
, “
R1: A Rule-Based Configurer of Computer Systems
,”
Artif. Intell.
,
19
(
1
), pp.
39
88
.
9.
Felfernig
,
A.
,
Hotz
,
L.
,
Bagley
,
C.
, and
Tiihonen
,
J.
,
2014
,
Knowledge-Based Configuration: From Research to Business Cases
,
Morgan Kaufmann Publishers Inc
,
San Francisco, CA
.
10.
He
,
C.
,
Li
,
Z. K.
,
Wang
,
S.
, and
Liu
,
D. S.
,
2021
, “
A Systematic Data-Mining-Based Methodology for Product Family Design and Product Configuration
,”
Adv. Eng. Inform.
,
48
, p.
101302
.
11.
Mittal
,
S.
, and
Frayman
,
F.
,
1989
, “
Towards a Generic Model of Configuration
,”
Proceedings of the 11th International Joint Conference on Artificial Intelligence
,
Detroit, MI
,
Aug. 20–25
.
12.
Lee
,
C. H.
,
Chen
,
C. H.
,
Lin
,
C. Y.
,
Li
,
F.
, and
Zhao
,
X. J.
,
2019
, “
Developing a Quick Response Product Configuration System Under Industry 4.0 Based on Customer Requirement Modelling and Optimization Method
,”
Appl. Sci.
,
9
(
23
), p.
5004
.
13.
Lim
,
K. Y. H.
,
Zheng
,
P.
, and
Chen
,
C. H.
,
2020
, “
A State-of-the-Art Survey of Digital Twin: Techniques, Engineering Product Lifecycle Management and Business Innovation Perspectives
,”
J. Intell. Manuf.
,
31
(
6
), pp.
1313
1337
.
14.
Zheng
,
P.
,
Xu
,
X.
,
Yu
,
S. Q.
, and
Liu
,
C.
,
2017
, “
Personalized Product Configuration Framework in an Adaptable Open Architecture Product Platform
,”
J. Manuf. Syst.
,
43
, pp.
422
435
.
15.
Shao
,
Z. S.
,
Shao
,
W. S.
, and
Pi
,
D. C.
,
2020
, “
Effective Constructive Heuristic and Metaheuristic for the Distributed Assembly Blocking Flow-Shop Scheduling Problem
,”
Appl. Intell.
,
50
(
12
), pp.
4647
4669
.
16.
Mailharro
,
D.
,
1998
, “
A Classification and Constraint-Based Framework for Configuration
,”
AI EDAM
,
12
(
4
), pp.
383
397
.
17.
Amilhastre
,
J.
,
Fargier
,
H.
, and
Marquis
,
P.
,
2002
, “
Consistency Restoration and Explanations in Dynamic CSP Application to Configuration
,”
Artif. Intell.
,
135
(
1
), pp.
199
234
.
18.
Wang
,
P.
,
Gong
,
Y.
,
Xie
,
H.
, and
Liu
,
Y.
,
2016
, “
SOMEDGRA: A Case Retrieval Method for Machine Tool Product Configuration Design
,”
J. Mech. Sci. Technol.
,
30
(
7
), pp.
3283
3293
.
19.
Zeng
,
F. S.
, and
Jin
,
Y.
,
2007
, “
Study on Product Configuration Based on Product Model
,”
Int. J. Adv. Manuf. Technol.
,
33
(
7
), pp.
766
771
.
20.
Lee
,
J.
, and
Han
,
S.
,
2010
, “
Knowledge-Based Configuration Design of a Train Bogie
,”
J. Mech. Sci. Technol.
,
24
(
12
), pp.
2503
2510
.
21.
Yang
,
D.
,
Miao
,
R.
,
Wu
,
H.
, and
Zhou
,
Y.
,
2009
, “
Product Configuration Knowledge Modeling Using Ontology Web Language
,”
Expert Syst. Appl.
,
36
(
3
), pp.
4399
4411
.
22.
Zhang
,
S. Y.
,
Ge
,
W. Q.
,
Wang
,
Z. L.
,
Qiu
,
L. M.
, and
Zhou
,
H. F.
,
2021
, “
A Heuristic Configuration Solving Process Planning Method for Mechanical Product Configuration by Imitating the Crystal Crystallization Process
,”
Int. J. Adv. Manuf. Technol.
,
116
(
1
), pp.
611
628
.
23.
Qiu
,
L. M.
,
Liu
,
X. J.
,
Zhang
,
S. Y.
, and
Sun
,
L. F.
,
2014
, “
Disassemblability Modeling Technology of Configurable Product Based on Disassembly Constraint Relation Weighted Design Structure Matrix (DSM)
,”
Chin. J. Mech. Eng.
,
27
(
3
), pp.
511
519
.
24.
Quinlan
,
J. R.
, and
Cameron-Jones
,
R. M.
,
1993
, “
FOIL: A Midterm Report
,”
European Conference on Machine Learning
,
Vienna, Austria
,
Apr. 5–7
, Springer, Berlin/Heidelberg.
25.
Yin
,
X.
, and
Han
,
J.
,
2003
, “
CPAR: Classification based on Predictive Association Rules
,”
Proceedings of the Third SIAM international Conference on Data Mining
,
San Francisco, CA
,
May 1–3
, Vol. 24, pp.
236
255
.
26.
Quinlan
,
J. R.
,
1986
, “
Induction of Decision Trees
,”
Mach. Learn.
,
1
(
1
), pp.
81
106
.
27.
Quinlan
,
J. R.
,
1992
,
C4.5: Programs for Machine Learning
,
Morgan Kaufmann Publishers Inc
,
San Francisco, CA
.
28.
Agrawal
,
R.
,
1993
, “
Mining Association Rules Between Sets of Items in Large Databases
,”
ACM Sigmod International Conference on Management of Data
,
Seattle, WA
,
May 26–28
.
29.
Liu
,
J.
,
Pan
,
Y.
,
Wang
,
K.
, and
Han
,
J.
,
2018
, “
Mining Frequent Item Sets by Opportunistic Projection
,”
The 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Edmonton, AB, Canada
,
July 23–26
.
30.
Sucahyo
,
Y. G.
, and
Gopalan
,
R. P.
,
2004
, “
CT-PRO: A Bottom-Up Non Recursive Frequent Itemset Mining Algorithm Using Compressed FP-Tree Data Structure
,”
Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations
,
Brighton, UK
,
Nov. 1
.
31.
Omiecinski
,
E. R.
,
2003
, “
Alternative Interest Measures for Mining Associations in Databases
,”
IEEE Trans. Knowl. Data Eng.
,
15
(
1
), pp.
57
69
.
32.
Andrews
,
R.
, and
Geva
,
S.
,
2002
, “
Rule Extraction From Local Cluster Neural Nets
,”
Neurocomputing
,
47
(
1–4
), pp.
1
20
.
33.
Zárate
,
L. E.
, and
Dias
,
S. M.
,
2009
, “
Qualitative Behavior Rules for the Cold Rolling Process Extracted From Trained ANN via the FCANN Method
,”
Eng. Appl. Artif. Intell.
,
22
(
4–5
), pp.
718
731
.
34.
Ozturk
,
G.
,
Bahadir
,
O.
, and
Teymourifar
,
A.
,
2018
, “
Extracting Priority Rules for Dynamic Multi-Objective Flexible Job Shop Scheduling Problems Using Gene Expression Programming
,”
Int. J. Prod. Res.
,
57
(
10
), pp.
3121
3137
.
35.
Zhang
,
Z.
,
Qin
,
H.
,
Li
,
J.
,
Liu
,
Y.
,
Yao
,
L.
,
Wang
,
Y.
,
Wang
,
C.
,
Pei
,
S.
,
Li
,
P.
, and
Zhou
,
J.
,
2021
, “
Operation Rule Extraction Based on Deep Learning Model With Attention Mechanism for Wind-Solar-Hydro Hybrid System Under Multiple Uncertainties
,”
Renewable Energy
,
170
(
3
), pp.
92
106
.
36.
Biswas
,
S. K.
,
Chakraborty
,
M.
,
Purkayastha
,
B.
,
Roy
,
P.
, and
Thounaojam
,
D.
,
2017
, “
Rule Extraction From Training Data Using Neural Network
,”
Int. J. Artif. Intell. Tools
,
26
(
3
), p.
1750006
.
37.
Ye
,
X.
, and
Lu
,
Y.
,
2020
, “
Automatic Extraction of Engineering Rules From Unstructured Text: A Natural Language Processing Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
034501
.
You do not currently have access to this content.