Abstract

Delta-like architectures are widely used for fast pick-and-place applications. When rotational degrees-of-freedom are required to perform a task, one or more UPU kinematic chains are usually added to transmit the torques from motors located on the base to the platform, in order to actuate a wrist. Packaging applications usually require five degrees-of-freedom, and two UPU chains are then used to actuate two rotational degrees-of-freedom (DOFs) on the end-effector. However, the UPU chain induces significant limitations for industrial use: it significantly constrains the workspace along the vertical direction and implies a backlash in the universal joints degrading the accuracy of the robot. In this paper, we investigate an alternative to the UPU kinematic chain for designing delta-like robots with five DOFs. Indeed, the actuation of a two-DOFs wrist is performed through the use of a kinematic chain based on a succession of parallelograms associated with a delta-like leg. After a description of the kinematic models of the modified leg and an analysis of its singularities, a design optimization procedure is presented in order to define suitable geometric parameters for a given industrial application. Finally, a prototype is presented and its performances are evaluated.

References

1.
Clavel
,
R.
,
1990
, “
Device for the Movement and Positioning of an Element in Space
,” US976582A.
2.
Ehrat
,
M.
,
2001
, “
Robot Pour manipuler des produits dans un espace à 3 dimensions
,” EP1129829A1.
3.
Wang
,
H.
,
2013
, “
Spatial Six-Degree-of-Freedom Mechanism Capable of Separately Controlling Rotation Motion and Translation Motion
,” CN102848375A.
4.
Ilch
,
H.
,
2018
, “
Robot Industriel
,” EP3352950A1.
5.
Zhao
,
X.
, and
Wang
,
P.
,
2013
, “
Telescopic Space Triple-Translation Parallel Manipulator
,” CN103240729A.
6.
Mihara
,
N.
, and
Sanada
,
T.
,
2014
, “
Parallel Robot, Robot System, and Assembly Method for Transfer System
,” US2014360306A1.
7.
Fujimoto
,
K.
,
Kinoshita
,
S.
,
Kurebayashi
,
H.
,
Nagayama
,
T.
,
Uemura
,
T.
, and
Yamamoto
,
M.
,
2011
, “
Parallel Link Robot
,” US2011097184A1.
8.
Monti
,
G.
,
2012
, “
Dispositif pour déplacer et positionner un membre dans l’espace
,” EP2517841A1.
9.
Kim
,
K. H.
,
2014
, “
Parallel Link Robot Providing Additional Degree of Freedom by Wire Rope
,” KR101401463B1.
10.
Xie
,
F.
, and
Liu
,
X.-J.
,
2015
, “
Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041015
.
11.
Wu
,
G.
,
Bai
,
S.
, and
Hjørnet
,
P.
,
2016
, “
Architecture Optimization of a Parallel Schönflies-Motion Robot for Pick-and-Place Applications in a Predefined Workspace
,”
Mech. Mach. Theory
,
106
(
C
), pp.
148
165
.
12.
Pierrot
,
F.
, and
Company
,
O.
,
1999
, “
H4: A New Family of 4-DOF Parallel Robots
,”
1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No. 99TH8399)
,
Atlanta, GA
,
Sept. 19–23
, IEEE, pp.
508
513
.
13.
Wu
,
G.
,
2018
, “
SCARA Parallel Mechanism That Moves With Rectangle Working Space
,” CN207104907 (U).
14.
Pierrot
,
F.
,
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Poignet
,
P.
,
2009
, “
Optimal Design of a 4-dof Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Robot.
,
25
(
2
), pp.
213
224
.
15.
Krut
,
S.
,
Benoit
,
M.
,
Ota
,
H.
, and
Pierrot
,
F.
,
2003
, “
I4: A New Parallel Mechanism for Scara Motions
,”
2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422)
,
Taipei, Taiwan
,
Sept. 14–19
, Vol. 2, pp.
1875
1880
.
16.
Krut
,
S.
,
Nabat
,
V.
,
Company
,
O.
, and
Pierrot
,
F.
,
2004
, “
A High-Speed Parallel Robot for Scara Motions
,”
Proceedings of the IEEE International Conference on Robotics and Automation, 2004 (ICRA’04)
,
New Orleans, LA
,
Apr. 26–May 1
, Vol. 4, pp.
4109
4115
.
17.
Pierrot
,
F.
,
Marquet
,
F.
,
Company
,
O.
, and
Gil
,
T.
,
2001
, “
H4 Parallel Robot: Modeling, Design and Preliminary Experiments
,”
Proceedings IEEE International Conference on Robotics and Automation 2001 (ICRA) (Cat. No. 01CH37164)
,
Seoul, South Korea
,
May 21–26
, Vol. 4, pp.
3256
3261
.
18.
Krut
,
S.
,
Company
,
O.
,
Nabat
,
V.
, and
Pierrot
,
F.
,
2006
, “
Heli4: A Parallel Robot for Scara Motions With a Very Compact Traveling Plate and a Symmetrical Design
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
1656
1661
.
19.
Altuzarra
,
O.
,
Şandru
,
B.
,
Pinto
,
C.
, and
Petuya
,
V.
,
2011
, “
A Symmetric Parallel Schönflies-Motion Manipulator for Pick-and-Place Operations
,”
Robotica
,
29
(
6
), pp.
853
862
.
20.
Pierrot
,
F.
,
Dauchez
,
P.
, and
Fournier
,
A.
,
1991
, “
HEXA: A Fast Six-DOF Fully-Parallel Robot
,”
Fifth International Conference on Advanced Robotics. Robots in Unstructured Environments
,
Pisa, Italy
,
July 8–10
, IEEE, pp.
1158
1163
.
21.
Hongo
,
K.
,
2016
, “
Robot À tringles parallèles et structure À tringles parallèles
.”
22.
Wu
,
G.
,
2016
, “
Conceptual Design and Analysis of a 6-axis Double Delta Robot Towards High Acceleration
,”
ASIAN MMS 2016 & CCMMS 2016
,
Guangzhou, China
,
Dec. 15–17
, Springer, pp.
389
401
.
23.
Briot
,
S.
,
Bégoc
,
V.
,
Le Mesle
,
V.
,
Trebouvil
,
M.
, and
Brisseau
,
P.
,
2022
, “
Tool Robot Comprising at Least One Rotating ARM
.”
24.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
25.
Clavel
,
R.
,
1991
, “
Conception d’un robot parallèle rapide à 4 degrés de liberté
,” PhD thesis,
EPFL
,
Lausanne
.
26.
López
,
M.
,
Castillo
,
E.
,
García
,
G.
, and
Bashir
,
A.
,
2006
, “
Delta Robot: Inverse, Direct, and Intermediate Jacobians
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
220
(
1
), pp.
103
109
.
27.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292)
,
Washington, DC
,
May 11–15
, Vol. 1, pp.
496
502
.
28.
Gregorio
,
R. D.
,
2004
, “
Determination of Singularities in Delta-Like Manipulators
,”
Int. J. Robot. Res.
,
23
(
1
), pp.
89
96
.
29.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
, 2nd ed. No. 74 in Solid Mechanics and Its Applications,
Kluwer Academic Publishers
,
Dordrecht
.
30.
Sutherland
,
G.
, and
Roth
,
B.
,
1973
, “
A Transmission Index for Spatial Mechanisms
,”
J. Eng. Ind.
,
95
(
2
), pp.
589
597
.
31.
Takeda
,
Y.
, and
Funabashi
,
H.
,
1995
, “
Motion Transmissibility of In-Parallel Actuated Manipulators
,”
JSME Int. J. Ser. C Dyn. Control Robot. Des. Manuf.
,
38
(
4
), pp.
749
755
.
32.
Glazunov
,
V. A.
,
Arkaelyan
,
V.
,
Briot
,
S.
, and
Rashoyan
,
G. V.
,
2012
, “
Speed and Force Criteria for the Proximity to Singularities of Parallel Structure Manipulators
,”
J. Mach. Manuf. Reliab.
,
41
(
3
), pp.
194
199
.
33.
Brinker
,
J.
,
Corves
,
B.
, and
Takeda
,
Y.
,
2018
, “
Kinematic Performance Evaluation of High-Speed Delta Parallel Robots Based on Motion/Force Transmission Indices
,”
Mech. Mach. Theory
,
125
, pp.
111
125
.
34.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X.-J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
35.
Liu
,
X.-J.
,
Li
,
J.
, and
Zhou
,
Y.
,
2015
, “
Kinematic Optimal Design of a 2-Degree-of-Freedom 3-Parallelogram Planar Parallel Manipulator
,”
Mech. Mach. Theory
,
87
(
May
), pp.
1
17
.
36.
Germain
,
C.
,
Caro
,
S.
,
Briot
,
S.
, and
Wenger
,
P.
,
2013
, “
Optimal Design of the IRSBot-2 Based on an Optimized Test Trajectory
,”
IDETC-CIE 2013
,
Portland, OR
,
Aug. 4–7
, p. V06AT07A056.
37.
Briot
,
S.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2010
, “
Optimal Technology-Oriented Design of Parallel Robots for High-Speed Machining Applications
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–8
, IEEE, pp.
1155
1161
.
38.
Schneider Electrics
,
2022
,
Monitoring Load and Overload (I2T Monitoring) (Technical Report of Schneider's Company)
.
You do not currently have access to this content.