Abstract

Metal additive manufacturing (AM) has recently attracted attention due to its potential for batch/mass production of metal parts. This process, however, currently suffers from problems including low productivity, inconsistency in the properties of the printed parts, and defects such as lack of fusion and keyholing. Finite element (FE) modeling cannot accurately model the metal AM process and has a high computational cost. Empirical models based on experiments are time-consuming and expensive. This paper enhances a previously developed framework that takes advantages of both empirical and FE models. The validity and accuracy of the metamodel developed in the earlier framework depend on the initial assumption of parameter uncertainties. This causes a problem when the assumed uncertainties are far from the actual values. The proposed framework introduces an iterative calibration process to overcome this limitation. After comparing several calibration metrics, the second-order statistical moment-based metric (SMM) was chosen as the calibration metric in the improved framework. The framework is then applied to a four-variable porosity modeling problem. The obtained model is more accurate than using other approaches with only ten available experimental data points for calibration and validation.

References

1.
Holshouser
,
C.
,
Newell
,
C.
,
Palas
,
S.
,
Duty
,
C.
,
Love
,
L.
,
Kunc
,
V.
,
Lind
,
R.
, et al
,
2013
, “
Out of Bounds Additive Manufacturing
,”
Adv. Mater. Process.
,
171
(
3
), p.
15
.
2.
Herderick
,
E. D.
,
2016
, “
Erratum to: Additive Manufacturing in the Minerals, Metals, and Materials Community: Past, Present, and Exciting Future
,”
JOM
,
68
(
4
), p.
1263
.
3.
Petrovic
,
V.
,
Vicente Haro Gonzalez
,
J.
,
Jordá Ferrando
,
O.
,
Delgado Gordillo
,
J.
,
Ramón Blasco Puchades
,
J.
, and
Portolés Griñan
,
L.
,
2011
, “
Additive Layered Manufacturing: Sectors of Industrial Application Shown Through Case Studies
,”
Int. J. Prod. Res.
,
49
(
4
), pp.
1061
1079
.
4.
Bandyopadhyay
,
A.
, and
Traxel
,
K. D.
,
2018
, “
Invited Review Article: Metal-Additive Manufacturing—Modeling Strategies for Application-Optimized Designs
,”
Addit. Manuf.
,
22
, pp.
758
774
.
5.
Francois
,
M. M.
,
Sun
,
A.
,
King
,
W. E.
,
Henson
,
N. J.
,
Tourret
,
D.
,
Bronkhorst
,
C. A.
,
Carlson
,
N. N.
, et al
,
2017
, “
Modeling of Additive Manufacturing Processes for Metals: Challenges and Opportunities
,”
Curr. Opin. Solid State Mater. Sci.
,
21
(
4
), pp.
198
206
.
6.
Yadroitsau
,
I.
,
2008
, “
Direct Manufacturing of 3D Objects by Selective Laser Melting of Metal Powders
,”
Ph.D. dissertation
,
Génie des procédés
,
Saint-Etienne, France
.
7.
Moges
,
T.
,
Ameta
,
G.
, and
Witherell
,
P.
,
2019
, “
A Review of Model Inaccuracy and Parameter Uncertainty in Laser Powder Bed Fusion Models and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
040801
.
8.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
Calibration and Validation Framework for Selective Laser Melting Process Based on Multi-Fidelity Models and Limited Experiment Data
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081701
.
9.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
.
10.
Ma
,
L.
,
Fong
,
J.
,
Lane
,
B.
,
Moylan
,
S.
,
Filliben
,
J.
,
Heckert
,
A.
, and
Levine
,
L.
,
2015
, “
Using Design of Experiments in Finite Element Modeling to Identify Critical Variables for Laser Powder Bed Fusion
,”
Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Austin, TX
,
Aug. 10–12
.
11.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.
12.
Raghunath
,
N.
, and
Pandey
,
P. M.
,
2007
, “
Improving Accuracy Through Shrinkage Modelling by Using Taguchi Method in Selective Laser Sintering
,”
Int. J. Mach. Tools Manuf.
,
47
(
6
), pp.
985
995
.
13.
Luo
,
Z.
, and
Zhao
,
Y.
,
2018
, “
A Survey of Finite Element Analysis of Temperature and Thermal Stress Fields in Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
318
332
.
14.
Yang
,
Z.
,
Eddy
,
D.
,
Krishnamurty
,
S.
,
Grosse
,
I.
,
Denno
,
P.
, and
Lopez
,
F.
,
2016
, “
Investigating Predictive Metamodeling for Additive Manufacturing
,”
Proceedings of the ASME IDETC/CIE. DETC2016-60506
,
Charllote, NC
,
Aug. 21–24
,
p. V01AT02A020
.
15.
Roh
,
B.-M.
,
Kumara
,
S. R. T.
,
Simpson
,
T. W.
,
Michaleris
,
P.
,
Witherell
,
P.
, and
Assouroko
,
I.
,
2016
, “
Ontology-Based Laser and Thermal Metamodels for Metal-Based Additive Manufacturing
,”
Proceedings of the ASME IDETC/CIE. DETC2016-60233
,
Charlotte, NC
,
Aug. 21–24
,
p. V01AT02A043
.
16.
Wang
,
L.
,
Chen
,
X.
,
Kang
,
S.
,
Deng
,
X.
, and
Jin
,
R.
,
2020
, “
Meta-Modeling of High-Fidelity FEA Simulation for Efficient Product and Process Design in Additive Manufacturing
,”
Addit. Manuf.
,
35
, p.
101211
.
17.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Meth. Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.
18.
Kennedy
,
M. C.
, and
O’hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc Series B Stat. Methodol.
,
63
(
3
), pp.
425
464
.
19.
Jung
,
B. C.
,
Park
,
J.
,
Oh
,
H.
,
Kim
,
J.
, and
Youn
,
B. D.
,
2015
, “
A Framework of Model Validation and Virtual Product Qualification With Limited Experimental Data Based on Statistical Inference
,”
Struct. Multidiscip. Optim.
,
51
(
3
), pp.
573
583
.
20.
Xu
,
H.
,
Jiang
,
Z.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2016
, “
New Metrics for Validation of Data-Driven Random Process Models in Uncertainty Quantification
,”
J. Verif. Valid. Uncertain. Quantif.
,
1
(
2
), p.
021002
.
21.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
22.
Li
,
R.
,
Liu
,
J.
,
Shi
,
Y.
,
Du
,
M.
, and
Xie
,
Z.
,
2010
, “
316L Stainless Steel With Gradient Porosity Fabricated by Selective Laser Melting
,”
J. Mater. Eng. Perform.
,
19
(
5
), pp.
666
671
.
23.
Tucho
,
W. M.
,
Lysne
,
V. H.
,
Austbø
,
H.
,
Sjolyst-Kverneland
,
A.
, and
Hansen
,
V.
,
2018
, “
Investigation of Effects of Process Parameters on Microstructure and Hardness of SLM Manufactured SS316L
,”
J. Alloys Compd.
,
740
, pp.
910
925
.
You do not currently have access to this content.