Abstract

Automated design synthesis has the potential to revolutionize the modern engineering design process and improve access to highly optimized and customized products across countless industries. Successfully adapting generative machine learning to design engineering may enable such automated design synthesis and is a research subject of great importance. We present a review and analysis of deep generative machine learning models in engineering design. Deep generative models (DGMs) typically leverage deep networks to learn from an input dataset and synthesize new designs. Recently, DGMs such as feedforward neural networks (NNs), generative adversarial networks (GANs), variational autoencoders (VAEs), and certain deep reinforcement learning (DRL) frameworks have shown promising results in design applications like structural optimization, materials design, and shape synthesis. The prevalence of DGMs in engineering design has skyrocketed since 2016. Anticipating the continued growth, we conduct a review of recent advances to benefit researchers interested in DGMs for design. We structure our review as an exposition of the algorithms, datasets, representation methods, and applications commonly used in the current literature. In particular, we discuss key works that have introduced new techniques and methods in DGMs, successfully applied DGMs to a design-related domain, or directly supported the development of DGMs through datasets or auxiliary methods. We further identify key challenges and limitations currently seen in DGMs across design fields, such as design creativity, handling constraints and objectives, and modeling both form and functional performance simultaneously. In our discussion, we identify possible solution pathways as key areas on which to target the future work.

References

1.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
2.
Deng
,
L.
, and
Yu
,
D.
,
2014
, “
Deep Learning: Methods and Applications
,”
Found. Trends Signal Process.
,
7
(
3–4
), pp.
197
387
.
3.
Goodfellow
,
I. J.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Proceedings of the 27th International Conference on Neural Information Processing Systems – Volume 2, NIPS’14
,
Montréal, Quebec, Canada
, MIT Press, pp.
2672
2680
.
4.
Zhu
,
J.-Y.
,
Park
,
T.
,
Isola
,
P.
, and
Efros
,
A. A.
,
2017
, “
Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks
,”
2017 IEEE International Conference on Computer Vision (ICCV)
,
Venice, Italy
, pp.
2242
2251
.
5.
Choi
,
Y.
,
Uh
,
Y.
,
Yoo
,
J.
, and
Ha
,
J.-W.
,
2020
, “
Stargan V2: Diverse Image Synthesis for Multiple Domains
,”
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Virtual
, pp.
8185
8194
.
6.
Karras
,
T.
,
Laine
,
S.
,
Aittala
,
M.
,
Hellsten
,
J.
,
Lehtinen
,
J.
, and
Aila
,
T.
,
2020
, “
Analyzing and Improving the Image Quality of Stylegan
,”
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Virtual
, pp.
8107
8116
.
7.
Karras
,
T.
,
Laine
,
S.
, and
Aila
,
T.
,
2019
, “
A Style-Based Generator Architecture for Generative Adversarial Networks
,”
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Long Beach, CA
, pp.
4396
4405
.
8.
Creswell
,
A.
,
White
,
T.
,
Dumoulin
,
V.
,
Arulkumaran
,
K.
,
Sengupta
,
B.
, and
Bharath
,
A. A.
,
2018
, “
Generative Adversarial Networks: An Overview
,”
IEEE Signal Process. Mag.
,
35
(
1
), pp.
53
65
.
9.
Salimans
,
T.
,
Goodfellow
,
I.
,
Zaremba
,
W.
,
Cheung
,
V.
,
Radford
,
A.
, and
Chen
,
X.
,
2016
, “
Improved Techniques for Training GANS
,”
Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16
,
Barcelona, Spain
, pp.
2234
2242
.
10.
Arjovsky
,
M.
, and
Bottou
,
L.
,
2017
, “
Towards Principled Methods for Training Generative Adversarial Networks
,” arXiv:1701.04862.
11.
Arjovsky
,
M.
,
Chintala
,
S.
, and
Bottou
,
L.
,
2017
, “
Wasserstein Generative Adversarial Networks
,”
Proceedings of the 34th International Conference on Machine Learning—Volume 70, ICML’17
,
Long Beach, CA
, pp.
214
223
.
12.
Gulrajani
,
I.
,
Ahmed
,
F.
,
Arjovsky
,
M.
,
Dumoulin
,
V.
, and
Courville
,
A.
,
2017
, “
Improved Training of Wasserstein GANS
,”
Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17
,
Long Beach, CA
, pp.
5769
5779
.
13.
Srivastava
,
A.
,
Valkov
,
L.
,
Russell
,
C.
,
Gutmann
,
M. U.
, and
Sutton
,
C.
,
2017
, “
Veegan: Reducing Mode Collapse in Gans Using Implicit Variational Learning
,”
Advances in Neural Information Processing Systems
,
Long Beach, CA
, pp.
3308
3318
.
14.
Salimans
,
T.
,
Goodfellow
,
I.
,
Zaremba
,
W.
,
Cheung
,
V.
,
Radford
,
A.
,
Chen
,
X.
, and
Chen
,
X.
,
2016
, “
Improved Techniques for Training Gans
,”
Advances in Neural Information Processing Systems
,
Barcelona, Spain
, pp.
2234
2242
.
15.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
Padgan: Learning to Generate High-Quality Novel Designs
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031703
.
16.
Mirza
,
M.
, and
Osindero
,
S.
,
2014
, “
Conditional Generative Adversarial Nets
,” arXiv:1411.1784.
17.
Chen
,
X.
,
Duan
,
Y.
,
Houthooft
,
R.
,
Schulman
,
J.
,
Sutskever
,
I.
, and
Abbeel
,
P.
,
2016
, “
Infogan: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
,”
Proceedings of the 30th International Conference on Neural Information Processing Systems
,
Barcelona, Spain
, pp.
2180
2188
.
18.
Dong
,
Y.
,
Li
,
D.
,
Zhang
,
C.
,
Wu
,
C.
,
Wang
,
H.
,
Xin
,
M.
,
Cheng
,
J.
, and
Lin
,
J.
,
2020
, “
Inverse Design of Two-Dimensional Graphene/h-BN Hybrids by a Regressional and Conditional GAN
,”
Carbon
,
169
, pp.
9
16
.
19.
Ding
,
X.
,
Wang
,
Y.
,
Xu
,
Z.
,
Welch
,
W. J.
, and
Wang
,
Z. J.
,
2021
, “
CcGAN: Continuous Conditional Generative Adversarial Networks for Image Generation
,”
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria
,
New Orleans, LA
,
May 3–7
.
20.
Heyrani Nobari
,
A.
,
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
PcDGAN: A Continuous Conditional Diverse Generative Adversarial Network for Inverse Design
,”
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
,
Virtual
,
August
.
21.
Kingma
,
D. P.
, and
Welling
,
M.
,
2013
, “
Auto-Encoding Variational Bayes
,” arXiv:1312.6114.
22.
Kullback
,
S.
, and
Leibler
,
R. A.
,
1951
, “
On Information and Sufficiency
,”
Ann. Math. Statist.
,
22
(
1
), pp.
79
86
.
23.
Kingma
,
D. P.
, and
Welling
,
M.
,
2019
, “
An Introduction to Variational Autoencoders
,”
Found. Trends Mach. Learning
,
12
(
4
), pp.
307
392
.
24.
Sohn
,
K.
,
Yan
,
X.
, and
Lee
,
H.
,
2015
, “
Learning Structured Output Representation Using Deep Conditional Generative Models
,”
Proceedings of the 28th International Conference on Neural Information Processing Systems – Volume 2, NIPS’15
,
Montréal, Quebec, Canada
, MIT Press, pp.
3483
3491
.
25.
Kaelbling
,
L. P.
,
Littman
,
M. L.
, and
Moore
,
A. W.
,
1996
, “
Reinforcement Learning: A Survey
,”
J. Artif. Int. Res.
,
4
(
1
), pp.
237
285
.
26.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Rusu
,
A. A.
,
Veness
,
J.
,
Bellemare
,
M. G.
,
Graves
,
A.
,
Riedmiller
,
M.
,
Fidjeland
,
A. K.
, and
Ostrovski
,
G.
,
2015
, “
Human-Level Control Through Deep Reinforcement Learning
,”
Nature
,
518
(
7540
), pp.
529
533
.
27.
Daneshmand
,
M.
,
Helmi
,
A.
,
Avots
,
E.
,
Noroozi
,
F.
,
Alisinanoglu
,
F.
,
Arslan
,
H. S.
,
Gorbova
,
J.
,
Haamer
,
R. E.
,
Ozcinar
,
C.
, and
Anbarjafari
,
G.
,
2018
,“
3D Scanning: A Comprehensive Survey
,” arXiv:1801.08863.
28.
Remondino
,
F.
,
2003
, “
From Point Cloud to Surface: The Modeling and Visualization Problem
,”
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
,
Tarasp-Vulpera, Switzerland
.
29.
Ranjan
,
A.
,
Bolkart
,
T.
,
Sanyal
,
S.
, and
Black
,
M. J.
,
2018
, “
Generating 3D Faces Using Convolutional Mesh Autoencoders
,”
Proceedings of the European Conference on Computer Vision (ECCV)
,
Munich, Germany
, pp.
704
720
.
30.
Cheng
,
S.
,
Bronstein
,
M.
,
Zhou
,
Y.
,
Kotsia
,
I.
,
Pantic
,
M.
, and
Zafeiriou
,
S.
,
2019
, “
Meshgan: Non-Linear 3D Morphable Models of Faces
,” arXiv:1903.10384.
31.
Zhang
,
Z.
,
Wang
,
Y.
,
Jimack
,
P. K.
, and
Wang
,
H.
,
2020
, “
Meshingnet: A New Mesh Generation Method Based on Deep Learning
,”
International Conference on Computational Science
,
Amsterdam, Netherlands
, Springer, pp.
186
198
.
32.
Wang
,
L.
,
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Deep Generative Modeling for Mechanistic-Based Learning and Design of Metamaterial Systems
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113377
.
33.
Chen
,
W.
, and
Fuge
,
M.
,
2019
, “
Synthesizing Designs With Interpart Dependencies Using Hierarchical Generative Adversarial Networks
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111403
.
34.
Stump
,
G. M.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C.
,
2019
, “
Spatial Grammar-Based Recurrent Neural Network for Design Form and Behavior Optimization
,”
ASME J. Mech. Des.
,
141
(
12
), p.
124501
.
35.
Cao
,
Weijuan
,
Robinson
,
Trevor
,
Hua
,
Yang
,
Boussuge
,
Flavien
,
Colligan
,
Andrew
, and
Pan
,
Wanbin
,
2020
, “
Graph Representation of 3D CAD Models for Machining Feature Recognition With Deep Learning
,”
46th Design Automation Conference (DAC) of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
, p. V11AT11A003.
36.
Yang
,
W.
,
Ding
,
H.
,
Zi
,
B.
, and
Zhang
,
D.
,
2017
, “
New Graph Representation for Planetary Gear Trains
,”
ASME J. Mech. Des.
,
140
(
1
), p.
012303
.
37.
Hsu
,
C.-H.
, and
Lam
,
K.-T.
,
1992
, “
A New Graph Representation for the Automatic Kinematic Analysis of Planetary Spur-Gear Trains
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
196
200
.
38.
Lee
,
J. Y.
, and
Kim
,
K.
,
1996
, “
Geometric Reasoning for Knowledge-Based Parametric Design Using Graph Representation
,”
Comput.-Aided Des.
,
28
(
10
), pp.
831
841
.
39.
Coatanéa
,
Eric
,
Nonsiri
,
Sarayut
,
Christophe
,
Francois
, and
Mokammel
,
Faisal
,
2014
, “
Graph Based Representation and Analyses for Conceptual Stages
,”
34th Computers and Information in Engineering Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
, p. V01AT02A071.
40.
Patalano
,
S.
,
Vitolo
,
F.
, and
Lanzotti
,
A.
,
2013
, “
A Graph-Based Software Tool for the CAD Modeling of Mechanical Assemblies
,”
International Joint Conference on Computer Vision
,
Beijing, China
.
41.
Henaff
,
M.
,
Bruna
,
J.
, and
LeCun
,
Y.
,
2015
, “
Deep Convolutional Networks on Graph-Structured Data
,”
arxiv preprint
.
42.
Yun
,
S.
,
Jeong
,
M.
,
Kim
,
R.
,
Kang
,
J.
, and
Kim
,
H. J.
,
2019
, “
Graph Transformer Networks
,”
Advances in Neural Information Processing Systems
,
Vancouver, British Columbia, Canada
.
43.
Veličković
,
P.
,
Cucurull
,
G.
,
Casanova
,
A.
,
Romero
,
A.
,
Liò
,
P.
, and
Bengio
,
Y.
,
2018
, “
Graph Attention Networks
,”
International Conference on Learning Representations
,
Vancouver, British Columbia, Canada
.
44.
Vashishth
,
S.
,
Sanyal
,
S.
,
Nitin
,
V.
, and
Talukdar
,
P.
,
2019
, “
Composition-Based Multi-Relational Graph Convolutional Networks
,”
International Conference on Learning Representations
,
New Orleans, LA
.
45.
Li
,
Y.
,
Tarlow
,
D.
,
Brockschmidt
,
M.
, and
Zemel
,
R.
,
2017
, “
Gated Graph Sequence Neural Networks
,”
arxiv preprint
.
46.
Liao
,
R.
,
Li
,
Y.
,
Song
,
Y.
,
Wang
,
S.
,
Hamilton
,
W.
,
Duvenaud
,
D. K.
,
Urtasun
,
R.
, and
Zemel
,
R.
,
2019
, “
Efficient Graph Generation with Graph Recurrent Attention Networks
,”
Advances in Neural Information Processing Systems
,
Vancouver, British Columbia, Canada
, Curran Associates, Inc.
47.
Bojchevski
,
A.
,
Shchur
,
O.
,
Zügner
,
D.
, and
Günnemann
,
S.
,
2018
, “
Netgan: Generating Graphs Via Random Walks
,”
International Conference on Machine Learning
,
Stockholm, Sweden
, pp.
609
618
.
48.
You
,
J.
,
Ying
,
R.
,
Ren
,
X.
,
Hamilton
,
W.
, and
Leskovec
,
J.
,
2018
, “
GraphRNN: Generating Realistic Graphs With Deep Auto-Regressive Models
,”
International Conference on Machine Learning
,
Stockholm, Sweden
, pp.
5708
5717
.
49.
Li
,
Y.
,
Vinyals
,
O.
,
Dyer
,
C.
,
Pascanu
,
R.
, and
Battaglia
,
P.
,
2018
, “
Learning Deep Generative Models of Graphs
,”
arxiv preprint
.
50.
Cao
,
N. D.
, and
Kipf
,
T.
,
2018
, “
Molgan: An Implicit Generative Model for Small Molecular Graphs
,”
arxiv preprint
.
51.
You
,
J.
,
Liu
,
B.
,
Ying
,
R.
,
Pande
,
V.
, and
Leskovec
,
J.
,
2018
, “
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
,”
Proceedings of the 32nd International Conference on Neural Information Processing Systems
,
Montréal, Quebec, Canada
, pp.
6412
6422
.
52.
Sosnovik
,
I.
, and
Oseledets
,
I.
,
2019
, “
Neural Networks for Topology Optimization
,”
Russ. J. Numer. Anal. Math. Model.
,
34
(
4
), pp.
215
223
.
53.
Behzadi
,
M. M.
, and
Ilieş
,
H. T.
,
2021
, “
Real-Time Topology Optimization in 3D Via Deep Transfer Learning
,”
Comput. Aided Des.
,
135
, p.
103014
.
54.
Keshavarzzadeh
,
V.
,
Alirezaei
,
M.
,
Tasdizen
,
T.
, and
Kirby
,
R. M.
,
2021
, “
Image-Based Multiresolution Topology Optimization Using Deep Disjunctive Normal Shape Model
,”
Comput. Aided Des.
,
130
, p.
102947
.
55.
Cang
,
R.
,
Yao
,
H.
, and
Ren
,
Y.
,
2019
, “
One-Shot Generation of Near-Optimal Topology Through Theory-Driven Machine Learning
,”
Comput. Aided Des.
,
109
, pp.
12
21
.
56.
Malkiel
,
I.
,
Mrejen
,
M.
,
Nagler
,
A.
,
Arieli
,
U.
,
Wolf
,
L.
, and
Suchowski
,
H.
,
2018
, “
Plasmonic Nanostructure Design and Characterization Via Deep Learning
,”
Light: Sci. Appl.
,
7
(
1
), pp.
1
8
.
57.
Li
,
X.
,
Zhang
,
Y.
,
Zhao
,
H.
,
Burkhart
,
C.
,
Brinson
,
L. C.
, and
Chen
,
W.
,
2018
, “
A Transfer Learning Approach for Microstructure Reconstruction and Structure-Property Predictions
,”
Sci. Rep.
,
8
(
1
), pp.
1
13
.
58.
Jung
,
J.
,
Na
,
J.
,
Park
,
H. K.
,
Park
,
J. M.
,
Kim
,
G.
,
Lee
,
S.
, and
Kim
,
H. S.
,
2021
, “
Super-Resolving Material Microstructure Image Via Deep Learning for Microstructure Characterization and Mechanical Behavior Analysis
,”
npj Comput. Mater.
,
7
(
1
), pp.
1
11
.
59.
Li
,
B.
,
Huang
,
C.
,
Li
,
X.
,
Zheng
,
S.
, and
Hong
,
J.
,
2019
, “
Non-Iterative Structural Topology Optimization Using Deep Learning
,”
Comput.-Aided Des.
,
115
, pp.
172
180
.
60.
Rawat
,
S.
, and
Shen
,
M. H.
,
2019
, “
Application of Adversarial Networks for 3D Structural Topology Optimization
,”
SAE Technical Paper, Technical Report
.
61.
Oh
,
S.
,
Jung
,
Y.
,
Lee
,
I.
, and
Kang
,
N.
,
2018
, “
Design Automation by Integrating Generative Adversarial Networks and Topology Optimization
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
, p. V02AT03A008.
62.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
63.
Tan
,
R. K.
,
Zhang
,
N. L.
, and
Ye
,
W.
,
2020
, “
A Deep Learning–Based Method for the Design of Microstructural Materials
,”
Struct. Multidiscipl. Optim.
,
61
(
4
), pp.
1417
1438
.
64.
Yang
,
Z.
,
Li
,
X.
,
Catherine Brinson
,
L.
,
Choudhary
,
A. N.
,
Chen
,
W.
, and
Agrawal
,
A.
,
2018
, “
Microstructural Materials Design Via Deep Adversarial Learning Methodology
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111416
.
65.
Zhang
,
H.
,
Yang
,
L.
,
Li
,
C.
,
Wu
,
B.
, and
Wang
,
W.
,
2021
, “
Scaffoldgan: Synthesis of Scaffold Materials Based on Generative Adversarial Networks
,”
Comput. Aided Des.
,
138
, p.
103041
.
66.
Mosser
,
L.
,
Dubrule
,
O.
, and
Blunt
,
M. J.
,
2017
, “
Reconstruction of Three-Dimensional Porous Media Using Generative Adversarial Neural Networks
,”
Phys. Rev. E
,
96
(
4
), p.
043309
.
67.
Lee
,
J.-W.
,
Goo
,
N. H.
,
Park
,
W. B.
,
Pyo
,
M.
, and
Sohn
,
K.-S.
,
2021
, “
Virtual Microstructure Design for Steels Using Generative Adversarial Networks
,”
Eng. Rep.
,
3
(
1
), p.
e12274
.
68.
Liu
,
S.
,
Zhong
,
Z.
,
Takbiri-Borujeni
,
A.
,
Kazemi
,
M.
,
Fu
,
Q.
, and
Yang
,
Y.
,
2019
, “
A Case Study on Homogeneous and Heterogeneous Reservoir Porous Media Reconstruction by Using Generative Adversarial Networks
,”
Energy Procedia
,
158
, pp.
6164
6169
.
69.
Shu
,
D.
,
Cunningham
,
J.
,
Stump
,
G.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2020
, “
3D Design Using Generative Adversarial Networks and Physics-Based Validation
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071701
.
70.
Sharpe
,
C.
, and
Seepersad
,
C. C.
,
2019
, “
Topology Design With Conditional Generative Adversarial Networks
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
, p. V02AT03A062.
71.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
Topologygan: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
72.
Yu
,
Y.
,
Hur
,
T.
,
Jung
,
J.
, and
Jang
,
I. G.
,
2019
, “
Deep Learning for Determining a Near-Optimal Topological Design Without Any Iteration
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
787
799
.
73.
Valdez
,
S.
,
Seepersad
,
C.
, and
Kambampati
,
S.
,
2021
, “
A Framework for Interactive Structural Design Exploration
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-21
,
Virtual
.
74.
Yilmaz
,
E.
, and
German
,
B.
,
2020
, “
Conditional Generative Adversarial Network Framework for Airfoil Inverse Design
,”
AIAA AVIATION 2020 FORUM
,
Virtual
, p.
3185
.
75.
Chen
,
W.
, and
Fuge
,
M.
,
2018
, “
Béziergan: Automatic Generation of Smooth Curves From Interpretable Low-Dimensional Parameters
,” arXiv:1808.08871.
76.
Chen
,
W.
,
Chiu
,
K.
, and
Fuge
,
M.
,
2019
, “
Aerodynamic Design Optimization and Shape Exploration Using Generative Adversarial Networks
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
, p.
2351
.
77.
Heyrani Nobari
,
A.
,
Chen
,
W. W.
, and
Ahmed
,
F.
,
2022
, “
Range-GAN: Design Synthesis Under Constraints Using Conditional Generative Adversarial Networks
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021708
.
78.
Wang
,
P.
,
Peng
,
D.
,
Li
,
L.
,
Chen
,
L.
,
Wu
,
C.
,
Wang
,
X.
,
Childs
,
P.
, and
Guo
,
Y.
,
2019
, “
Human-in-the-Loop Design With Machine Learning
,”
Proc. Design Soc. Int. Conf. Eng. Design
,
1
(
1
), pp.
2577
2586
.
79.
Guo
,
T.
,
Lohan
,
D. J.
,
Cang
,
R.
,
Ren
,
M. Y.
, and
Allison
,
J. T.
,
2018
, “
An Indirect Design Representation for Topology Optimization Using Variational Autoencoder and Style Transfer
,”
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
, p.
0804
.
80.
Cang
,
R.
,
Li
,
H.
,
Yao
,
H.
,
Jiao
,
Y.
, and
Ren
,
Y.
,
2018
, “
Improving Direct Physical Properties Prediction of Heterogeneous Materials From Imaging Data Via Convolutional Neural Network and a Morphology-Aware Generative Model
,”
Comput. Mater. Sci.
,
150
, pp.
212
221
.
81.
Li
,
X.
,
Ning
,
S.
,
Liu
,
Z.
,
Yan
,
Z.
,
Luo
,
C.
, and
Zhuang
,
Z.
,
2020
, “
Designing Phononic Crystal With Anticipated Band Gap Through a Deep Learning Based Data-Driven Method
,”
Comput. Methods Appl. Mech. Eng.
,
361
, p.
112737
.
82.
Liu
,
Z.
,
Raju
,
L.
,
Zhu
,
D.
, and
Cai
,
W.
,
2020
, “
A Hybrid Strategy for the Discovery and Design of Photonic Structures
,”
IEEE J. Emerg. Sel. Top. Circuits Syst.
,
10
(
1
), pp.
126
135
.
83.
Xue
,
T.
,
Wallin
,
T. J.
,
Menguc
,
Y.
,
Adriaenssens
,
S.
, and
Chiaramonte
,
M.
,
2020
, “
Machine Learning Generative Models for Automatic Design of Multi-Material 3D Printed Composite Solids
,”
Extreme Mech. Lett.
,
41
, p.
100992
.
84.
Brock
,
A.
,
Lim
,
T.
,
Ritchie
,
J. M.
, and
Weston
,
N.
,
2016
, “
Context-Aware Content Generation for Virtual Environments
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
, p. V01BT02A045.
85.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
Computational Creativity Via Assisted Variational Synthesis of Mechanisms Using Deep Generative Models
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121402
.
86.
Sharma
,
S.
, and
Purwar
,
A.
,
2020
, “
Path Synthesis of Defect-Free Spatial 5-SS Mechanisms Using Machine Learning
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
, p. V010T10A034.
87.
Regenwetter
,
L.
,
Curry
,
B.
, and
Ahmed
,
F.
,
2022
, “
BIKED: A Dataset for Computational Bicycle Design With Machine Learning Benchmarks
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031706
.
88.
Tang
,
Y.
,
Kojima
,
K.
,
Koike-Akino
,
T.
,
Wang
,
Y.
,
Wu
,
P.
,
Tahersima
,
M.
,
Jha
,
D.
,
Parsons
,
K.
, and
Qi
,
M.
,
2020
, “
Generative Deep Learning Model for a Multi-Level Nano-Optic Broadband Power Splitter
,”
2020 Optical Fiber Communications Conference and Exhibition (OFC)
,
San Diego, CA
, IEEE, pp.
1
3
.
89.
Chen
,
H.
, and
Liu
,
X.
,
2021
, “
Geometry Enhanced Generative Adversarial Networks for Random Heterogeneous Material Representation
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-21
,
Virtual
.
90.
Burnap
,
A.
,
Liu
,
Y.
,
Pan
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Estimating and Exploring the Product Form Design Space Using Deep Generative Models
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
, p. V02AT03A013.
91.
Ma
,
W.
,
Cheng
,
F.
,
Xu
,
Y.
,
Wen
,
Q.
, and
Liu
,
Y.
,
2019
, “
Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model With Semi-Supervised Learning Strategy
,”
Adv. Mater.
,
31
(
35
), p.
1901111
.
92.
Zhang
,
W.
,
Yang
,
Z.
,
Jiang
,
H.
,
Nigam
,
S.
,
Yamakawa
,
S.
,
Furuhata
,
T.
,
Shimada
,
K.
, and
Kara
,
L. B.
,
2019
, “
3D Shape Synthesis for Conceptual Design and Optimization Using Variational Autoencoders
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
, p. V02AT03A017.
93.
Deshpande
,
S.
, and
Purwar
,
A.
,
2020
, “
An Image-Based Approach to Variational Path Synthesis of Linkages
,”
J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
021005
.
94.
Li
,
R.
,
Zhang
,
Y.
, and
Chen
,
H.
,
2021
, “
Learning the Aerodynamic Design of Supercritical Airfoils Through Deep Reinforcement Learning
,”
AIAA J.
,
59
(
10
), pp.
1
14
.
95.
Dering
,
M.
,
Cunningham
,
J.
,
Desai
,
R.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2018
, “
A Physics-Based Virtual Environment for Enhancing the Quality of Deep Generative Designs
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
, p. V02AT03A015.
96.
Lee
,
X. Y.
,
Balu
,
A.
,
Stoecklein
,
D.
,
Ganapathysubramanian
,
B.
, and
Sarkar
,
S.
,
2019
, “
A Case Study of Deep Reinforcement Learning for Engineering Design: Application to Microfluidic Devices for Flow Sculpting
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111401
.
97.
Raina
,
A.
,
Puentes
,
L.
,
Cagan
,
J.
, and
McComb
,
C.
,
2021
, “
Goal-Directed Design Agents: Integrating Visual Imitation With One-Step Lookahead Optimization for Generative Design
,”
ASME J. Mech. Des.
,
143
(
12
), p.
124501
.
98.
Lopez
,
Christian E
,
Ashour
,
Omar
, and
Tucker
,
Conrad S.
,
2019
, “
Reinforcement Learning Content Generation for Virtual Reality Applications
,”
39th Computers and Information in Engineering Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
, p. V001T02A009.
99.
Cunningham
,
James
,
Lopez
,
Christian
,
Ashour
,
Omar
, and
Tucker
,
Conrad S.
,
2020
, “
Multi-Context Generation in Virtual Reality Environments Using Deep Reinforcement Learning
,”
40th Computers and Information in Engineering Conference (CIE) of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
, p. V009T09A072.
100.
Greminger
,
M.
,
2020
, “
Generative Adversarial Networks With Synthetic Training Data for Enforcing Manufacturing Constraints on Topology Optimization
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
, p. V11AT11A005.
101.
Fujita
,
K.
,
Minowa
,
K.
,
Nomaguchi
,
Y.
,
Yamasaki
,
S.
, and
Yaji
,
K.
,
2021
, “
Design Concept Generation With Variational Deep Embedding Over Comprehensive Optimization
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-21
,
Virtual
.
102.
Cang
,
R.
,
Vipradas
,
A.
, and
Ren
,
Y.
,
2017
, “
Scalable Microstructure Reconstruction With Multi-Scale Pattern Preservation
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
, p. V02BT03A010.
103.
Cang
,
R.
,
Xu
,
Y.
,
Chen
,
S.
,
Liu
,
Y.
,
Jiao
,
Y.
, and
Yi Ren
,
M.
,
2017
, “
Microstructure Representation and Reconstruction of Heterogeneous Materials Via Deep Belief Network for Computational Material Design
,”
ASME J. Mech. Des.
,
139
(
7
), p.
071404
.
104.
Fokina
,
D.
,
Muravleva
,
E.
,
Ovchinnikov
,
G.
, and
Oseledets
,
I.
,
2020
, “
Microstructure Synthesis Using Style-Based Generative Adversarial Networks
,”
Phys. Rev. E
,
101
(
4
), p.
043308
.
105.
Wang
,
Z.
,
Xian
,
W.
,
Baccouche
,
M. R.
,
Lanzerath
,
H.
,
Li
,
Y.
, and
Xu
,
H.
,
2021
, “
A Gaussian Mixture Variational Autoencoder-Based Approach for Designing Phononic Bandgap Metamaterials
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-21
,
Virtual
.
106.
Cang
,
Ruijin
, and
Ren
,
Max Yi
,
2016
, “
Deep Network-Based Feature Extraction and Reconstruction of Complex Material Microstructures
,”
42nd Design Automation Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
, p. V02BT03A008.
107.
Vermeer
,
Kaz
,
Kuppens
,
Reiner
, and
Herder
,
Justus
,
2018
, “
Kinematic Synthesis Using Reinforcement Learning
,”
44th Design Automation Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
, p. V02AT03A009.
108.
Raina
,
A.
,
McComb
,
C.
, and
Cagan
,
J.
,
2019
, “
Learning to Design From Humans: Imitating Human Designers Through Deep Learning
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111102
.
109.
Puentes
,
L.
,
Raina
,
A.
,
Cagan
,
J.
, and
McComb
,
C.
,
2020
, “
Modeling a Strategic Human Engineering Design Process: Human-Inspired Heuristic Guidance Through Learned Visual Design Agents
,”
Proceedings of the Design Society: DESIGN Conference
,
Cavtat, Croatia
, Cambridge University Press, pp.
355
364
.
110.
Yukish
,
M. A.
,
Stump
,
G. M.
, and
Miller
,
S. W.
,
2020
, “
Using Recurrent Neural Networks to Model Spatial Grammars for Design Creation
,”
ASME J. Mech. Des.
,
142
(
10
), p.
104501
.
111.
Zhu
,
J.-H.
,
Zhang
,
W.-H.
, and
Xia
,
L.
,
2016
, “
Topology Optimization in Aircraft and Aerospace Structures Design
,”
Arch. Comput. Methods Eng.
,
23
(
4
), pp.
595
622
.
112.
Xia
,
L.
, and
Breitkopf
,
P.
,
2017
, “
Recent Advances on Topology Optimization of Multiscale Nonlinear Structures
,”
Arch. Comput. Methods Eng.
,
24
(
2
), pp.
227
249
.
113.
Borrvall
,
T.
, and
Petersson
,
J.
,
2003
, “
Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
77
107
.
114.
Zhou
,
S.
, and
Li
,
Q.
,
2008
, “
A Variational Level Set Method for the Topology Optimization of Steady-State Navier–Stokes Flow
,”
J. Comput. Phys.
,
227
(
24
), pp.
10178
10195
.
115.
Zegard
,
T.
, and
Paulino
,
G. H.
,
2016
, “
Bridging Topology Optimization and Additive Manufacturing
,”
Struct. Multidiscipl. Optim.
,
53
(
1
), pp.
175
192
.
116.
Langelaar
,
M.
,
2016
, “
Topology Optimization of 3D Self-Supporting Structures for Additive Manufacturing
,”
Addit. Manuf.
,
12
, pp.
60
70
.
117.
Dbouk
,
T.
,
2017
, “
A Review About the Engineering Design of Optimal Heat Transfer Systems Using Topology Optimization
,”
Appl. Therm. Eng.
,
112
, pp.
841
854
.
118.
Koga
,
A. A.
,
Lopes
,
E. C. C.
,
Nova
,
H. F. V.
,
De Lima
,
C. R.
, and
Silva
,
E. C. N.
,
2013
, “
Development of Heat Sink Device by Using Topology Optimization
,”
Int. J. Heat Mass Transfer
,
64
, pp.
759
772
.
119.
Gatys
,
L.
,
Ecker
,
A. S.
, and
Bethge
,
M.
,
2015
, “
Texture Synthesis Using Convolutional Neural Networks
,”
Advances in Neural Information Processing Systems
,
Montréal, Quebec, Canada
.
120.
Gatys
,
L. A.
,
Ecker
,
A. S.
, and
Bethge
,
M.
,
2016
, “
Image Style Transfer Using Convolutional Neural Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
, pp.
2414
2423
.
121.
Berthelot
,
D.
,
Schumm
,
T.
, and
Metz
,
L.
,
2017
, “
BEGAN: Boundary Equilibrium Generative Adversarial Networks
,” arXiv:1703.10717.
122.
Jiang
,
Z.
,
Zheng
,
Y.
,
Tan
,
H.
,
Tang
,
B.
, and
Zhou
,
H.
,
2017
, “
Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering
,”
Proceedings of the 26th International Joint Conference on Artificial Intelligence
,
Melbourne, Australia
, pp.
1965
1972
.
123.
Ledig
,
C.
,
Theis
,
L.
,
Huszár
,
F.
,
Caballero
,
J.
,
Cunningham
,
A.
,
Acosta
,
A.
,
Aitken
,
A.
,
Tejani
,
A.
,
Totz
,
J.
, and
Wang
,
Z.
,
2017
, “
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
,”
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
, IEEE, pp.
105
114
.
124.
Isola
,
P.
,
Zhu
,
J.-Y.
,
Zhou
,
T.
, and
Efros
,
A. A.
,
2017
, “
Image-to-Image Translation With Conditional Adversarial Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
, pp.
1125
1134
.
125.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
, pp.
770
778
.
126.
Hu
,
J.
,
Shen
,
L.
, and
Sun
,
G.
,
2018
, “
Squeeze-and-Excitation Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
, pp.
7132
7141
.
127.
Long
,
J.
,
Shelhamer
,
E.
, and
Darrell
,
T.
,
2015
, “
Fully Convolutional Networks for Semantic Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
, pp.
3431
3440
.
128.
Bostanabad
,
R.
,
Zhang
,
Y.
,
Li
,
X.
,
Kearney
,
T.
,
Brinson
,
L. C.
,
Apley
,
D. W.
,
Liu
,
W. K.
, and
Chen
,
W.
,
2018
, “
Computational Microstructure Characterization and Reconstruction: Review of the State-of-the-Art Techniques
,”
Prog. Mater. Sci.
,
95
, pp.
1
41
.
129.
Lee
,
H.
,
Grosse
,
R.
,
Ranganath
,
R.
, and
Ng
,
A. Y.
,
2009
, “
Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations
,”
Proceedings of the 26th Annual International Conference on Machine Learning
,
Montréal, Quebec, Canada
, pp.
609
616
.
130.
Yu
,
S.
,
Zhang
,
Y.
,
Wang
,
C.
,
Lee
,
W.-k.
,
Dong
,
B.
,
Odom
,
T. W.
,
Sun
,
C.
, and
Chen
,
W.
,
2017
, “
Characterization and Design of Functional Quasi-Random Nanostructured Materials Using Spectral Density Function
,”
ASME J. Mech. Des.
,
139
(
7
), p.
071401
.
131.
Molesky
,
S.
,
Lin
,
Z.
,
Piggott
,
A. Y.
,
Jin
,
W.
,
Vucković
,
J.
, and
Rodriguez
,
A. W.
,
2018
, “
Inverse Design in Nanophotonics
,”
Nat. Photonics
,
12
(
11
), pp.
659
670
.
132.
Dilokthanakul
,
N.
,
Mediano
,
P. A.
,
Garnelo
,
M.
,
Lee
,
M. C.
,
Salimbeni
,
H.
,
Arulkumaran
,
K.
, and
Shanahan
,
M.
,
2016
, “
Deep Unsupervised Clustering With Gaussian Mixture Variational Autoencoders
,” arXiv:1611.02648.
133.
Schulman
,
J.
,
Wolski
,
F.
,
Dhariwal
,
P.
,
Radford
,
A.
, and
Klimov
,
O.
,
2017
, “
Proximal Policy Optimization Algorithms
,” arXiv:1707.06347.
134.
Gielis
,
J.
,
2003
, “
A Generic Geometric Transformation that Unifies a Wide Range of Natural and Abstract Shapes
,”
Am. J. Botany
,
90
(
3
), pp.
333
338
.
135.
Ha
,
D.
, and
Eck
,
D.
,
2018
, “
A Neural Representation of Sketch Drawings
,”
International Conference on Learning Representations
,
Vancouver, British Columbia, Canada
.
136.
Kulesza
,
A.
, and
Taskar
,
B.
,
2012
, “
Determinantal Point Processes for Machine Learning
,”
Found. Trends® Mach. Learning
,
5
(
2–3
), pp.
123
286
.
137.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
MO-PaDGAN: Reparameterizing Engineering Designs for Augmented Multi-Objective Optimization
,”
Appl. Soft. Comput.
,
113
(
A
), p.
107909
.
138.
Li
,
J.
,
Xu
,
K.
,
Chaudhuri
,
S.
,
Yumer
,
E.
,
Zhang
,
H.
, and
Guibas
,
L.
,
2017
, “
Grass: Generative Recursive Autoencoders for Shape Structures
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
14
.
139.
Zou
,
C.
,
Yumer
,
E.
,
Yang
,
J.
,
Ceylan
,
D.
, and
Hoiem
,
D.
,
2017
, “
3D-PRNN: Generating Shape Primitives With Recurrent Neural Networks
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Venice, Italy
, pp.
900
909
.
140.
Groueix
,
T.
,
Fisher
,
M.
,
Kim
,
V. G.
,
Russell
,
B. C.
, and
Aubry
,
M.
,
2018
, “
A Papier-Mâché Approach to Learning 3D Surface Generation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
, pp.
216
224
.
141.
Gao
,
L.
,
Yang
,
J.
,
Wu
,
T.
,
Yuan
,
Y.-J.
,
Fu
,
H.
,
Lai
,
Y.-K.
, and
Zhang
,
H.
,
2019
, “
SDM-NET: Deep Generative Network for Structured Deformable Mesh
,”
ACM Trans. Graph.
,
38
(
6
), pp.
1
15
.
142.
Mo
,
K.
,
Guerrero
,
P.
,
Yi
,
L.
,
Su
,
H.
,
Wonka
,
P.
,
Mitra
,
N. J.
, and
Guibas
,
L. J.
,
2019
, “
Structurenet: Hierarchical Graph Networks for 3D Shape Generation
,”
ACM Trans. Graph.
,
38
(
6
), pp.
1
19
.
143.
Park
,
J. J.
,
Florence
,
P.
,
Straub
,
J.
,
Newcombe
,
R.
, and
Lovegrove
,
S.
,
2019
, “
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
.
144.
Liu
,
S.
,
Giles
,
L.
, and
Ororbia
,
A.
,
2018
, “
Learning a Hierarchical Latent-Variable Model of 3D Shapes
,”
2018 International Conference on 3D Vision (3DV)
,
Verona, Italy
, IEEE, pp.
542
551
.
145.
Qi
,
C. R.
,
Su
,
H.
,
Mo
,
K.
, and
Guibas
,
L. J.
,
2017
, “
Pointnet: Deep Learning on Point Sets for 3D Classification and Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
, pp.
652
660
.
146.
Karnewar
,
A.
, and
Wang
,
O.
,
2020
, “
MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Virtual
, pp.
7799
7808
.
147.
van Hasselt
,
H.
,
Guez
,
A.
, and
Silver
,
D.
,
2016
, “
Deep Reinforcement Learning with Double q-Learning
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
Phoenix, AZ
.
148.
Odena
,
A.
,
Olah
,
C.
, and
Shlens
,
J.
,
2017
, “
Conditional Image Synthesis With Auxiliary Classifier GANS
,”
International Conference on Machine Learning
,
Sydney, Australia
, pp.
2642
2651
.
149.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2018
, “
Data on the Design of Truss Structures by Teams of Engineering Students
,”
Data Brief
,
18
, pp.
160
163
.
150.
Hunter
,
W.
,
2017
, Topy-Topology Optimization with Python, https://github.com/williamhunter/topy
151.
Iren
,
D.
,
Ackermann
,
M.
,
Gorfer
,
J.
,
Pujar
,
G.
,
Wesselmecking
,
S.
,
Krupp
,
U.
, and
Bromuri
,
S.
,
2021
, “
Aachen-Heerlen Annotated Steel Microstructure Dataset
,”
Sci. Data
,
8
(
1
), pp.
1
9
.
152.
Larmuseau
,
M.
,
Sluydts
,
M.
,
Theuwissen
,
K.
,
Duprez
,
L.
,
Dhaene
,
T.
, and
Cottenier
,
S.
,
2020
, “
Compact Representations of Microstructure Images Using Triplet Networks
,”
npj Comput. Mater.
,
6
(
1
), pp.
1
11
.
153.
DeCost
,
B. L.
,
Hecht
,
M. D.
,
Francis
,
T.
,
Webler
,
B. A.
,
Picard
,
Y. N.
, and
Holm
,
E. A.
,
2017
, “
UHCSDB: Ultrahigh Carbon Steel Micrograph Database
,”
Integrating Mater. Manufactur. Innovation
,
6
(
2
), pp.
197
205
.
154.
Zhao
,
H.
,
Wang
,
Y.
,
Lin
,
A.
,
Hu
,
B.
,
Yan
,
R.
,
McCusker
,
J.
,
Chen
,
W.
,
McGuinness
,
D. L.
,
Schadler
,
L.
, and
Brinson
,
L. C.
,
2018
, “
Nanomine Schema: An Extensible Data Representation for Polymer Nanocomposites
,”
APL Mater.
,
6
(
11
), p.
111108
.
155.
Chang
,
A. X.
,
Funkhouser
,
T.
,
Guibas
,
L.
,
Hanrahan
,
P.
,
Huang
,
Q.
,
Li
,
Z.
, and
Savarese
,
S.
,
2015
,
Shapenet: An Information-Rich 3D Model Repository
.
156.
Mo
,
K.
,
Zhu
,
S.
,
Chang
,
A. X.
,
Yi
,
L.
,
Tripathi
,
S.
,
Guibas
,
L. J.
, and
Su
,
H.
,
2019
, “
Partnet: A Large-Scale Benchmark for Fine-Grained and Hierarchical Part-Level 3D Object Understanding
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
, pp.
909
918
.
157.
Wu
,
Z.
,
Song
,
S.
,
Khosla
,
A.
,
Yu
,
F.
,
Zhang
,
L.
,
Tang
,
X.
, and
Xiao
,
J.
,
2015
, “
3D Shapenets: A Deep Representation for Volumetric Shapes
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
, pp.
1912
1920
.
158.
Kim
,
S.
,
Chi
,
H.-g.
,
Hu
,
X.
,
Huang
,
Q.
, and
Ramani
,
K.
,
2020
, “
A Large-Scale Annotated Mechanical Components Benchmark for Classification and Retrieval Tasks With Deep Neural Networks
,”
Proceedings of 16th European Conference on Computer Vision (ECCV)
,
Virtual
.
159.
Willis
,
K. D.
,
Pu
,
Y.
,
Luo
,
J.
,
Chu
,
H.
,
Du
,
T.
,
Lambourne
,
J. G.
,
Solar-Lezama
,
A.
, and
Matusik
,
W.
,
2021
, “
Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD Construction From Human Design Sequences
,”
ACM Trans. Graph.
,
40
(
4
), pp.
1
24
.
160.
Nobari
,
A. H.
,
Rashad
,
M. F.
, and
Ahmed
,
F.
,
2021
, “
Creativegan: Editing Generative Adversarial Networks for Creative Design Synthesis
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-21
,
Virtual
.
161.
Regenwetter
,
L.
,
Weaver
,
C.
, and
Ahmed
,
F.
,
2022
, “
Framed: Data-Driven Structural Performance Analysis of Community-Designed Bicycle Frames
,”
arxiv preprint
.
162.
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Wang
,
L.
, and
Chen
,
W.
,
2021
, “
Metaset: Exploring Shape and Property Spaces for Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031707
.
163.
Wang
,
L.
,
van Beek
,
A.
,
Da
,
D.
,
Chan
,
Y.-C.
,
Zhu
,
P.
, and
Chen
,
W.
,
2022
, “
Data-Driven Multiscale Design of Cellular Composites With Multiclass Microstructures for Natural Frequency Maximization
,”
Composite Structures
,
280
.
164.
Jongejan
,
J.
,
Rowley
,
H.
,
Kawashima
,
T.
,
Kim
,
J.
, and
Fox-Gieg
,
N.
,
2016
, “
The Quick, Draw!-ai Experiment
,”
Mount View, CA, Accessed Feb
,
17
(
2018
), p.
4
.
165.
Lopez
,
C.
,
Miller
,
S. R.
, and
Tucker
,
C. S.
,
2018
, “
Human Validation of Computer vs. Human Generated Design Sketches
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec, Quebec City, Canada
, p. V007T06A015.
166.
Toh
,
C. A.
, and
Miller
,
S. R.
,
2013
, “
Exploring the Utility of Product Dissection for Early-Phase Idea Generation
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
, p. V005T06A034.
167.
Liang
,
L.
,
Liu
,
M.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
A Deep Learning Approach to Estimate Stress Distribution: A Fast and Accurate Surrogate of Finite-Element Analysis
,”
J. R. Soc. Interface
,
15
(
138
), p.
20170844
.
168.
Jiang
,
Haoliang
,
Nie
,
Zhenguo
,
Yeo
,
Roselyn
,
Farimani
,
Amir Barati
, and
Kara
,
Levent Burak
,
2020
, “
StressGAN: A Generative Deep Learning Model for 2D Stress Distribution Prediction
,”
46th Design Automation Conference (DAC) of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
, p. V11BT11A023.
169.
Nie
,
Z.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2020
, “
Stress Field Prediction in Cantilevered Structures Using Convolutional Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011002
.
170.
Pfaff
,
T.
,
Fortunato
,
M.
,
Sanchez-Gonzalez
,
A.
, and
Battaglia
,
P.
,
2020
, “
Learning Mesh-Based Simulation With Graph Networks
,”
International Conference on Learning Representations
,
Virtual
.
171.
Kochkov
,
D.
,
Smith
,
J. A.
,
Alieva
,
A.
,
Wang
,
Q.
,
Brenner
,
M. P.
, and
Hoyer
,
S.
,
2021
, “
Machine Learning–Accelerated Computational Fluid Dynamics
,”
Proc. Natl. Acad. Sci. USA
,
118
(
21
), pp.
1
8
.
172.
Duraisamy
,
K.
,
Iaccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
357
377
.
173.
Kim
,
B.
,
Azevedo
,
V. C.
,
Thuerey
,
N.
,
Kim
,
T.
,
Gross
,
M.
, and
Solenthaler
,
B.
,
2019
, “
Deep Fluids: A Generative Network for Parameterized Fluid Simulations
,”
Comput. Graph. Forum
,
38
(
2
), pp.
59
70
.
174.
Dering
,
M. L.
, and
Tucker
,
C. S.
,
2017
, “
Generative Adversarial Networks for Increasing the Veracity of Big Data
,”
2017 IEEE International Conference on Big Data (Big Data)
,
Boston, MA
, IEEE, pp.
2595
2602
.
175.
Panchal
,
J. H.
,
Fuge
,
M.
,
Liu
,
Y.
,
Missoum
,
S.
, and
Tucker
,
C.
,
2019
, “
Special Issue: Machine Learning for Engineering Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
110301
.
176.
Elgammal
,
A.
,
Liu
,
B.
,
Elhoseiny
,
M.
, and
Mazzone
,
M.
,
2017
, “
CAN: Creative Adversarial Networks Generating “Art” by Learning About Styles and Deviating From Style Norms
,”
8th International Conference on Computational Creativity, ICCC 2017
,
Atlanta, GA
.
177.
Franceschelli
,
G.
, and
Musolesi
,
M.
,
2021
, “
Creativity and Machine Learning: A Survey
,”
arxiv preprint
.
178.
Chen
,
M.
,
Radford
,
A.
,
Child
,
R.
,
Wu
,
J.
,
Jun
,
H.
,
Luan
,
D.
,
Sutskever
,
I.
, and
Singh
,
A.
,
2020
, “
Generative Pretraining From Pixels
,”
Proceedings of the 37th International Conference on Machine Learning
,
Virtual
, pp.
1691
1703
.
179.
Ramesh
,
A.
,
Pavlov
,
M.
,
Goh
,
G.
,
Gray
,
S.
,
Voss
,
C.
,
Radford
,
A.
,
Chen
,
M.
, and
Sutskever
,
I.
,
2021
, “
Zero-Shot Text-to-Image Generation
,”
International Conference on Machine Learning
,
Virtual
.
180.
Dhariwal
,
P.
,
Jun
,
H.
,
Payne
,
C.
,
Kim
,
J. W.
,
Radford
,
A.
, and
Sutskever
,
I.
,
2020
, “
Jukebox: A Generative Model for Music
,”
arxiv preprint
.
181.
Radford
,
A.
,
Kim
,
J. W.
,
Hallacy
,
C.
,
Ramesh
,
A.
,
Goh
,
G.
,
Agarwal
,
S.
,
Sastry
,
G.
,
Askell
,
A.
,
Mishkin
,
P.
,
Clark
,
J.
,
Krueger
,
G.
, and
Sutskever
,
I.
,
2021
, “
Learning Transferable Visual Models From Natural Language Supervision
,”
International Conference on Machine Learning
,
Virtual
.
You do not currently have access to this content.