Abstract

Tire tread patterns have played an important role in the automotive industry because they directly affect automobile performances. The conventional tread pattern development process has successfully produced and manufactured many tire tread patterns. However, a conceptual design process, which is a major part of the whole process, is still time-consuming due to repetitive manual interaction works between designers and engineers. In the worst case, the whole design process must be performed again from the beginning to obtain the required results. In this study, a deep generative tread pattern design framework is proposed to automatically generate various tread patterns satisfying the target tire performances in the conceptual design process. The main concept of the proposed method is that desired tread patterns are obtained through optimization based on integrated functions, which combine generative models and tire performance evaluation functions. To strengthen the effectiveness of the proposed framework, suitable image pre-processing, generative adversarial networks (GANs), two-dimensional (2D) image-based tire performance evaluation functions, design generation, design exploration, and image post-processing methods are proposed with the help of domain knowledge of the tread pattern. The numerical results show that the proposed automatic design framework successfully creates various tread patterns satisfying the target tire performances such as summer, winter, or all-season patterns.

References

1.
Okonieski
,
R. E.
,
Moseley
,
D. J.
, and
Cai
,
K. Y.
,
2003
, “
Simplified Approach to Calculating Geometric Stiffness Properties of Tread Pattern Elements
,”
Tire Sci. Technol.
,
31
(
3
), pp.
132
158
.
2.
Nakajima
,
Y.
,
2019
,
Advanced Tire Mechanics
,
Springer
,
New York
.
3.
Mundl
,
R.
,
Fischer
,
M.
,
Strache
,
W.
,
Wiese
,
K.
,
Wies
,
B.
, and
Zinken
,
K. H.
,
2008
, “
Virtual Pattern Optimization Based on Performance Prediction Tools
,”
Tire Sci. Technol.
,
36
(
3
), pp.
192
210
.
4.
Wies
,
B.
,
Roeger
,
B.
, and
Mundl
,
R.
,
2009
, “
Influence of Pattern Void on Hydroplaning and Related Target Conflicts
,”
Tire Sci. Technol.
,
37
(
3
), pp.
187
206
.
5.
Seta
,
E.
,
Kamegawa
,
T.
, and
Nakajima
,
Y.
,
2003
, “
Prediction of Snow/Tire Interaction Using Explicit FEM and FVM
,”
Tire Sci. Technol.
,
31
(
3
), pp.
173
188
.
6.
Bhoopalam
,
A. K.
, and
Sandu
,
C.
,
2014
, “
Review of the State of the Art in Experimental Studies and Mathematical Modeling of Tire Performance on Ice
,”
J. Terramech.
,
53
, pp.
19
35
.
7.
Lee
,
S. K.
,
Lee
,
H.
,
Back
,
J.
,
An
,
K.
,
Yoon
,
Y.
,
Yum
,
K.
, and
Hwang
,
S. U.
,
2021
, “
Prediction of Tire Pattern Noise in Early Design Stage Based on Convolutional Neural Network
,”
Appl. Acoust.
,
172
, p.
107617
.
8.
Burnap
,
A.
,
Liu
,
Y.
,
Pan
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Estimating and Exploring the Product Form Design Space Using Deep Generative Models
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
American Society of Mechanical Engineers Digital Collection
, p. V02AT03A013.
9.
Frid-Adar
,
M.
,
Diamant
,
I.
,
Klang
,
E.
,
Amitai
,
M.
,
Goldberger
,
J.
, and
Greenspan
,
H.
,
2018
, “
GAN-Based Synthetic Medical Image Augmentation for Increased CNN Performance in Liver Lesion Classification
,”
Neurocomputing
,
321
, pp.
321
331
.
10.
Yang
,
Z.
,
Li
,
X.
,
Catherine Brinson
,
L.
,
Choudhary
,
A. N.
,
Chen
,
W.
, and
Agrawal
,
A.
,
2018
, “
Microstructural Materials Design via Deep Adversarial Learning Methodology
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111416
.
11.
Gui
,
J.
,
Sun
,
Z.
,
Wen
,
Y.
,
Tao
,
D.
, and
Ye
,
J.
,
2020
, “
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
,”
IEEE Trans. Knowl. Data Eng
. http://dx.odi.org/10.1109/TKDE.2021.3130191
12.
Chen
,
W.
,
Chiu
,
K.
, and
Fuge
,
M. D.
,
2020
, “
Airfoil Design Parameterization and Optimization Using Bézier Generative Adversarial Networks
,”
AIAA J.
,
58
(
11
), pp.
4723
4735
.
13.
Chen
,
W.
, and
Ramamurthy
,
A.
,
2021
, “
Deep Generative Model for Efficient 3D Airfoil Parameterization and Generation
,”
AIAA Scitech 2021 Forum, 1690
.
14.
Kingma
,
D. P.
, and
Welling
,
M.
,
2013
, “
Auto-Encoding Variational Bayes
,”
Proceedings of the 2nd International Conference on Learning Representations
,
Banff, Canada
,
Apr. 14–16
.
15.
Goodfellow
,
I. J.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Networks
,”
Advances in Neural Information Processing Systems
,
Montreal, Quebec, Canada
,
Dec. 8–13
, pp.
2672
2680
.
16.
Dumoulin
,
V.
,
Belghazi
,
I.
,
Poole
,
B.
,
Mastropietro
,
O.
,
Lamb
,
A.
,
Arjovsky
,
M.
, and
Courville
,
A.
,
2017
, “
Adversarially Learned Inference
,”
Proceedings of the 5th International Conference on Learning Representations
,
Toulon, France
,
Apr. 24–26
.
17.
Radford
,
A.
,
Metz
,
L.
, and
Chintala
,
S.
,
2015
, “
Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks
,”
Proceedings of the 4th International Conference on Learning Representations
,
San Juan, Puerto Rico
,
May 2–4
.
18.
Mao
,
X.
,
Li
,
Q.
,
Xie
,
H.
,
Lau
,
R. Y.
,
Wang
,
Z.
, and
Paul Smolley
,
S.
,
2017
, “
Least Squares Generative Adversarial Networks
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Venice, Italy
,
Oct. 22–29
, pp.
2813
2821
.
19.
Arjovsky
,
M.
,
Chintala
,
S.
, and
Bottou
,
L.
,
2017
, “
Wasserstein Generative Adversarial Networks
,”
Proceedings of the International Conference on Machine Learning, PMLR
,
Sydney, Australia
,
Aug. 6–11
, pp.
214
223
.
20.
Gulrajani
,
I.
,
Ahmed
,
F.
,
Arjovsky
,
M.
,
Dumoulin
,
V.
, and
Courville
,
A.
,
2017
, “
Improved Training of Wasserstein GANs
,”
Advances in Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
.
21.
Berthelot
,
D.
,
Schumm
,
T.
, and
Metz
,
L.
,
2017
, “
BEGAN: Boundary Equilibrium Generative Adversarial Networks
,” arXiv preprint arXiv:1703.10717.
22.
Salimans
,
T.
,
Goodfellow
,
I.
,
Zaremba
,
W.
,
Cheung
,
V.
,
Radford
,
A.
, and
Chen
,
X.
,
2016
, “
Improved Techniques for Training GANs
,”
Advances in Neural Information Processing Systems
,
Barcelona, Spain
,
Dec. 5–10
, pp.
2234
2242
.
23.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p. 111405.
24.
So
,
S.
, and
Rho
,
J.
,
2019
, “
Designing Nanophotonic Structures Using Conditional Deep Convolutional Generative Adversarial Networks
,”
Nanophotonics
,
8
(
7
), pp.
1255
1261
.
25.
Jiang
,
J.
, and
Fan
,
J. A.
,
2020
, “
Simulator-Based Training of Generative Neural Networks for the Inverse Design of Metasurfaces
,”
Nanophotonics
,
9
(
5
), pp.
1059
1069
.
26.
Feng
,
J.
,
Teng
,
Q.
,
Li
,
B.
,
He
,
X.
,
Chen
,
H.
, and
Li
,
Y.
,
2020
, “
An End-to-End Three-Dimensional Reconstruction Framework of Porous Media From a Single Two-Dimensional Image Based on Deep Learning
,”
Comput. Methods Appl. Mech. Eng.
,
368
, p.
113043
.
27.
Cheng
,
M.
,
Fang
,
F.
,
Pain
,
C. C.
, and
Navon
,
I. M.
,
2020
, “
Data-Driven Modelling of Nonlinear Spatio-Temporal Fluid Flows Using a Deep Convolutional Generative Adversarial Network
,”
Comput. Methods Appl. Mech. Eng.
,
365
, p.
113000
.
28.
Yu
,
Y.
,
Hur
,
T.
,
Jung
,
J.
, and
Jang
,
I. G.
,
2019
, “
Deep Learning for Determining a Near-Optimal Topological Design Without any Iteration
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
787
799
.
29.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
Topology GAN: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
30.
Gent
,
A. N.
, and
Walter
,
J. D.
,
2006
,
Pneumatic Tire
,
Mechanical Engineering Faculty Research
,
854
. https://ideaexchange.uakron.edu/mechanical_ideas/854
31.
Mundl
,
R.
,
Meschke
,
G.
, and
Liederer
,
W.
,
1997
, “
Friction Mechanism of Tread Blocks on Snow Surfaces
,”
Tire Sci. Technol.
,
25
(
4
), pp.
245
264
.
32.
Torok
,
A.
,
2015
, “
Importance of Tires: Case Study in Hungary
,”
Am. J. Vehicle Des.
,
3
(
1
), pp.
27
30
.
33.
Lucic
,
M.
,
Kurach
,
K.
,
Michalski
,
M.
,
Gelly
,
S.
, and
Bousquet
,
O.
,
2017
, “
Are GANs Created Equal? A Large-Scale Study
,” arXiv preprint arXiv:1711.10337.
34.
Creswell
,
A.
,
White
,
T.
,
Dumoulin
,
V.
,
Arulkumaran
,
K.
,
Sengupta
,
B.
, and
Bharath
,
A. A.
,
2018
, “
Generative Adversarial Networks: An Overview
,”
IEEE Signal Process. Mag.
,
35
(
1
), pp.
53
65
.
35.
Shorten
,
C.
, and
Khoshgoftaar
,
T. M.
,
2019
, “
A Survey on Image Data Augmentation for Deep Learning
,”
J. Big Data
,
6
(
1
), pp.
1
48
.
36.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
1
), pp.
62
66
.
37.
Misra
,
D.
,
2019
, “
Mish: A Self Regularized Non-Monotonic Neural Activation Function
,” arXiv preprint arXiv:1908.08681.
38.
Srivastava
,
N.
,
Hinton
,
G.
,
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Salakhutdinov
,
R.
,
2014
, “
Dropout: A Simple Way to Prevent Neural Networks From Overfitting
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
1929
1958
.
39.
Nesbitt
,
T. R.
, and
Barron
,
D. J.
,
1980
, “
Prediction of Driving Traction Performance on Snow
,”
SAE Transa.
,
89
, pp.
2519
2539
.
40.
Buchner
,
G. P.
,
Centner
,
R. W.
, and
Knowles
,
T. M.
,
1982
, “
Evaluation of Empirical Tread Design Predictions of Snow Traction as Measured With a Self-Contained Traction Vehicle
,”
SAE Trans.
,
91
, pp.
1326
1342
.
41.
Kang
,
K.
, and
Lee
,
I.
,
2021
, “
Efficient High-Dimensional Metamodeling Strategy Using Recursive Decomposition Coupled With Sequential Sampling Method
,”
Struct. Multidiscipl. Optim.
,
63
(
1
), pp.
375
390
.
42.
Leister
,
G.
,
2018
,
Passenger car Tires and Wheels: Development-Manufacturing-Application
,
Springer
,
New York
.
43.
Audet
,
C.
, and
Dennis
J. E.
, Jr
2002
, “
Analysis of Generalized Pattern Searches
,”
SIAM J. Optim.
,
13
(
3
), pp.
889
903
.
44.
Li
,
T.
,
Burdisso
,
R.
, and
Sandu
,
C.
,
2017
, “
An Artificial Neural Network Model to Predict Tread Pattern-Related Tire Noise
,” SAE Technical Paper, 2017-01-1904.
45.
Li
,
T.
,
2018
, “
Influencing Parameters on Tire–Pavement Interaction Noise: Review, Experiments, and Design Considerations
,”
Designs
,
2
(
4
), p.
38
.
46.
Pitas
,
I.
,
2000
,
Digital Image Processing Algorithms and Applications
,
John Wiley & Sons
,
New York
.
47.
Isola
,
P.
,
Zhu
,
J. Y.
,
Zhou
,
T.
, and
Efros
,
A. A.
,
2017
, “
Image-to-Image Translation With Conditional Adversarial Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
1125
1134
.
48.
Venkataraman
,
P.
,
2009
,
Applied Optimization with MATLAB Programming
,
John Wiley & Sons
,
New York
.
49.
Ketkar
,
N.
,
2017
,
Deep Learning with Python
,
Apress
,
Berkeley, CA
, pp.
195
208
.
50.
Heusel
,
M.
,
Ramsauer
,
H.
,
Unterthiner
,
T.
,
Nessler
,
B.
, and
Hochreiter
,
S.
,
2017
, “
GANS Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
,”
Adv. Neural Inf. Process. Syst.
,
30
, pp.
6626
6637
.
51.
Borji
,
A.
,
2019
, “
Pros and Cons of GAN Evaluation Measures
,”
Comput. Vis. Image Underst.
,
179
, pp.
41
65
.
52.
Gong
,
X.
,
Chang
,
S.
,
Jiang
,
Y.
, and
Wang
,
Z.
,
2019
, “
AutoGAN: Neural Architecture Search for Generative Adversarial Networks
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Seoul, South Korea
,
Oct. 27–Nov. 2
, pp.
3224
3234
.
53.
Liu
,
S.
,
Wang
,
T.
,
Bau
,
D.
,
Zhu
,
J. Y.
, and
Torralba
,
A.
,
2020
, “
Diverse Image Generation via Self-Conditioned GANs
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Seattle, WA
,
June 13–19
, pp.
14286
14295
.
You do not currently have access to this content.