Abstract

A new three-dimensional structural optimization is presented based on the level set method to obtain favorable designs for wire-fed metal additive manufacturing with uniform wall thickness. By exploiting the signed distance nature of a level set function, a structure under design is always defined as a thin domain with uniform thickness without employing any constrains or penalty functionals. The boundary surfaces of a thin-walled domain are defined as the surfaces with level set values of ±t/2(t: wall thickness). Design velocity can be represented in terms of curvatures of the zero-level-set surface, extended to level set grids in the narrow band. Therefore, the calculation of accurate curvatures on the zero-level set is crucial for correct design sensitivities. In this investigation, mean and Gaussian curvatures at a point on the triangle mesh of the discretized zero-level set are calculated by spatial averages over the Voronoi cell of the point, by which the sensitivity of a material volume can be calculated with optimal accuracy. To address the high computational cost by a dense regular mesh for representing thin walls, degrees of freedom in void regions is mostly removed. Design examples of beams and a T-joint structure with uniform thickness are presented to verify the effectiveness of the proposed method.

References

1.
Williams
,
S. W.
,
Martina
,
F.
,
Addison
,
A. C.
,
Ding
,
J.
,
Pardal
,
G.
, and
Colegrove
,
P.
,
2016
, “
Wire + arc Additive Manufacturing
,”
Mater. Sci. Technol.
,
32
(
7
), pp.
641
647
.
2.
Ulu
,
E.
,
Huang
,
R.
,
Kara
,
L. B.
, and
Whitefoot
,
K. S.
,
2019
, “
Concurrent Structure and Process Optimization for Minimum Cost Metal Additive Manufacturing
,”
ASME. J. Mech. Des.
,
141
(
6
), p.
061701
.
3.
Aboulkhair
,
N. T.
,
Simonelli
,
M.
,
Parry
,
L.
,
Ashcroft
,
I.
,
Tuck
,
C.
, and
Hague
,
R.
,
2019
, “
3D Printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys Using Selective Laser Melting
,”
Prog. Mater. Sci.
,
106
(
12
), p.
100578
.
4.
Fuchs
,
J.
,
Schneider
,
C.
, and
Enzinger
,
N.
,
2018
, “
Wire-Based Additive Manufacturing Using an Electron Beam as Heat Source
,”
Weld. World
,
62
(
2
), pp.
267
275
.
5.
Wu
,
B.
,
Pan
,
Z.
,
Ding
,
D.
,
Cuiuri
,
D.
,
Li
,
H.
,
Xu
,
J.
, and
Norrish
,
J.
,
2018
, “
A Review of the Wire arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement
,”
J. Manuf. Processes
,
35
(
10
), pp.
127
139
.
6.
Huang
,
W.
,
Chen
,
S.
,
Xiao
,
J.
,
Jiang
,
X.
, and
Jia
,
Y.
,
2021
, “
Laser Wire-Feed Metal Additive Manufacturing of the Al Alloy
,”
Opt. Laser Technol.
,
134
(
2
), p.
106627
.
7.
Jafari
,
D.
,
Vaneker
,
T. H. J.
, and
Gibson
,
I.
,
2021
, “
Wire and arc Additive Manufacturing: Opportunities and Challenges to Control the Quality and Accuracy of Manufactured Parts
,”
Mater. Des.
,
202
(
4
), p.
109471
.
8.
Orme
,
M. E.
,
Gschweitl
,
M.
,
Ferrari
,
M.
,
Madera
,
I.
, and
Mouriaux
,
F.
,
2017
, “
Designing for Additive Manufacturing: Lightweighting Through Topology Optimization Enables Lunar Spacecraft
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100905
.
9.
Kubalak
,
J. R.
,
Wicks
,
A. L.
, and
Williams
,
C. B.
,
2020
, “
Investigation of Parameter Spaces for Topology Optimization With Three-Dimensional Orientation Fields for Multi-Axis Additive Manufacturing
,”
ASME J. Mech. Des.
,
143
(
5
), p.
051701
.
10.
Misiun
,
G.
,
van de Ven
,
E.
,
Langelaar
,
M.
,
Geijselaers
,
H.
,
van Keulen
,
F.
,
van den Boogaard
,
T.
, and
Ayas
,
C.
,
2021
, “
Topology Optimization for Additive Manufacturing with Distortion Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
386
(
12
), p.
114095
.
11.
Botkin
,
M. E.
,
1982
, “
Shape Optimization of Plate and Shell Structures
,”
AIAA J.
,
20
(
2
), pp.
268
273
.
12.
Zhang
,
W. H.
, and
Domaszewski
,
M.
,
1999
, “
Efficient Sensitivity Analysis and Optimization of Shell Structures by the ABAQUS Code
,”
Struct. Optim.
,
18
(
2–3
), pp.
173
182
.
13.
Moita
,
J. S.
,
Infanta Barbosa
,
J.
,
Mota Soares
,
C. M.
, and
Mota Soares
,
C. A.
,
2000
, “
Sensitivity Analysis and Optimal Design of Geometrically Non-Linear Laminated Plates and Shells
,”
Comput. Struct.
,
76
(
1–3
), pp.
407
420
.
14.
Garcia
,
M. J.
, and
Steven
,
G. P.
,
1998
, “
Fixed Grid Finite Elements in Elasticity Problems
,”
Eng. Comput.
,
16
(
2
), pp.
154
164
.
15.
Wang
,
M. Y.
,
Wang
,
X. M.
, and
Guo
,
D. M.
,
2003
, “
A Level set Method for Structural Topology Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
16.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
17.
Zhu
,
B.
,
Wang
,
R.
,
Li
,
H.
, and
Zhang
,
X.
,
2018
, “
A Level set Method with a Bounded Diffusion for Structural Topology Optimization
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071402
.
18.
Wei
,
P.
,
Yang
,
Y.
,
Chen
,
S.
, and
Wang
,
M. Y.
,
2020
, “
A Study on Basis Functions of the Parameterized Level set Method for Topology Optimization of Continuums
,”
ASME. J. Mech. Des.
,
143
(
4
), p.
041701
.
19.
van Dijk
,
N.
,
Maute
,
K.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2013
, “
Level-set Methods for Structural Topology Optimization: a Review
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
437
472
.
20.
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2015
, “
Introducing the Sequential Linear Programming Level-set Method for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
51
(
3
), pp.
631
643
.
21.
Hedges
,
L. O.
,
Kim
,
H. A.
, and
Jack
,
R. L.
,
2017
, “
Stochastic Level-set Method for Shape Optimization
,”
J. Comput. Phys.
,
348
(
1
), pp.
82
107
.
22.
Liu
,
J.
, and
Ma
,
Y.
,
2017
, “
Sustainable Design-Oriented Level set Topology Optimization
,”
ASME J. Mech. Des.
,
139
(
1
), p.
011403
.
23.
Chen
,
S.
,
Wang
,
M. Y.
, and
Liu
,
A. Q.
,
2008
, “
Shape Feature Control in Structural Topology Optimization
,”
Comput. Des.
,
40
(
9
), pp.
951
962
.
24.
Guo
,
X.
,
Zhang
,
W. S.
, and
Zhong
,
W. L.
,
2014
, “
Explicit Feature Control in Structural Topology Optimization via Level set Method
,”
Comput. Meth. Appl. Mech. Eng.
,
272
(
4
), pp.
354
378
.
25.
Xia
,
Q.
, and
Shi
,
T.
,
2015
, “
Constraints of Distance From Boundary to Skeleton: for the Control of Length Scale in Level set Based Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
295
(
10
), pp.
525
542
.
26.
Allaire
,
G.
,
Jouve
,
F.
, and
Michailidis
,
G.
,
2016
, “
Thickness Control in Structural Optimization via a Level set Method
,”
Struct. Multidiscipl. Optim.
,
53
(
6
), pp.
1349
1382
.
27.
Wang
,
Y.
,
Zhang
,
L.
, and
Wang
,
M. Y.
,
2016
, “
Length Scale Control for Structural Optimization by Level Sets
,”
Comput. Methods Appl. Mech. Eng.
,
305
(
6
), pp.
891
909
.
28.
Zhu
,
B.
,
Wang
,
R.
,
Wang
,
N.
,
Li
,
H.
,
Zhang
,
X.
, and
Nishiwaki
,
S.
,
2021
, “
Explicit Structural Topology Optimization Using Moving Wide Bezier Components with Constrained Ends
,”
Struct. Multidiscipl. Optim.
,
64
(
1
), pp.
53
70
.
29.
Zhu
,
B.
,
Wang
,
R.
,
Zhang
,
H.
,
Li
,
H.
,
Liang
,
J.
,
Zhang
,
X.
,
Li
,
H.
, and
Nishiwaki
,
S.
,
2021
, “
An Approach for Geometrically Nonlinear Topology Optimization Using Moving Wide-Bezier Components with Constrained Ends
,”
ASME J. Mech. Des.
,
144
(
1
), p.
011704
.
30.
Liu
,
J.
,
Li
,
L.
, and
Ma
,
Y.
,
2018
, “
Uniform Thickness Control Without pre-Specifying the Length Scale Target Under the Level set Topology Optimization Framework
,”
Adv. Eng. Software
,
115
(
1
), pp.
204
216
.
31.
Liu
,
J.
,
Cheng
,
L.
, and
To
,
A. C.
,
2017
, “
Arbitrary Void Feature Control in Level set Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
324
(
1
), pp.
595
618
.
32.
Wang
,
Y.
, and
Kang
,
Z.
,
2018
, “
A Level set Method for Shape and Topology Optimization of Coated Structures
,”
Comput. Methods Appl. Mech. Eng.
,
329
(
2
), pp.
553
574
.
33.
Fu
,
J.
,
Li
,
H.
,
Xiao
,
M.
,
Gao
,
L.
, and
Chu
,
S.
,
2019
, “
Topology Optimization of Shell-Infill Structures Using a Distance Regularized Parametric Level-Set Method
,”
Struct. Multidiscipl. Optim.
,
59
(
1
), pp.
249
262
.
34.
Jang
,
G. W.
,
Sandilya
,
K.
,
Chung
,
H. Y.
, and
Kim
,
H. A.
,
2019
, “
Configuration Optimization for Thin Structures Using Level set Method
,”
Struct. Multidiscipl. Optim.
,
59
(
6
), pp.
1881
1893
.
35.
Carroll
,
J. D.
, and
Guest
,
J. K.
,
2021
, “
Topology Optimization Under Constant Feature Thickness Constraint for Wire Based Additive Manufacturing
,”
14th World Congress of Structural and Multidisciplinary Optimization
,
June 13–18
.
36.
Lorenson
,
W. E.
, and
Cline
,
H. E.
,
1987
, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
Comput. Graphics
,
21
(
4
), pp.
163
169
.
37.
Taubin
,
G.
,
1995
, “
Estimating the Tensor of Curvature of a Surface From a Polyhedral Approximation
,”
Proceedings International Conference on Computer Vision
, pp.
902
907
.
38.
Cazals
,
F.
, and
Pouget
,
M.
,
2003
, “
Estimating Differential Quantities Using Polynomial Fitting of Osculating Jets
,”
Symposium on Geometry Processing
, pp.
177
187
.
39.
Petitjean
,
S.
,
2001
, “
A Survey of Methods for Recovering Quadrics in Triangle Meshes
,”
ACM Comput. Surv.
,
34
(
2
), pp.
211
262
.
40.
Meyer
,
M.
,
Desbrun
,
M.
,
Schroder
,
P.
, and
Barr
,
A. H.
,
2003
,
Visualization and Mathematics, III
,
Springer, Berlin
, pp.
35
57
.
41.
Desbrun
,
M.
,
Meyer
,
M.
,
Schröder
,
P.
, and
Barr
,
A.
,
1999
, “
Implicit Fairing of Arbitrary Meshes Using Diffusion and Curvature Flow
,”
SIGGRAPH 99
.
42.
Balay
,
S.
,
Buschelman
,
K.
,
Eijkhout
,
V.
,
Gropp
,
W. D.
,
Kaushik
,
D.
,
Knepley
,
M. G.
,
McInnes
,
L. C.
,
Smith
,
B. F.
, and
Zhang
,
H.
,
2015
, “
PETSc Users Manual
,”
Technical Report ANL-95/11—Revision 3.6, Argonne National Laboratory
.
43.
Sivapuram
,
R.
,
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2016
, “
Simultaneous Material and Structural Optimization by Multiscale Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1267
1281
.
44.
Whitaker
,
R. T.
,
2002
, “
Isosurfaces and Level-Set Surface Models
,”
Technical Report
,
School of Computing, University of Utah
.
45.
Dierkes
,
U.
,
Hildebrandt
,
S.
,
Küster
,
A.
, and
Wohlrab
,
O.
,
1992
,
Minimal Surfaces (I): Boundary Value Problems
,
Springer-Verlag
,
Berlin
.
46.
Lee
,
J. M.
,
1997
,
Riemannian Manifolds: An Introduction to Curvature
,
Springer-Verlag Inc.
,
New York
.
47.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
21
(
2
), pp.
120
127
.
48.
Dunning
,
P. D.
,
Kim
,
H. A.
, and
Mullineux
,
G.
,
2011
, “
Investigation and Improvement of Sensitivity Computation Using the Area-Fraction Weighted Fixed Grid FEM and Structural Optimization
,”
Finite Elem. Anal. Des.
,
47
(
8
), pp.
933
941
.
49.
Osher
,
S.
, and
Fedkiw
,
R. P.
,
2001
, “
Level set Methods: an Overview and Some Recent Results
,”
J. Comput. Phys.
,
169
(
2
), pp.
463
502
.
50.
Sethian
,
J.
,
1996
, “
A Marching Level Set Method for Monotonically Advancing Fronts
,”
Proc. Natl. Acad. Sci.
,
93
(
4
), pp.
1591
1595
.
51.
Zhao
,
H. K.
,
2004
, “
A Fast Sweeping Method for Eikonal Equations
,”
Math. Comput.
,
74
(
250
), pp.
603
627
.
52.
Jeong
,
W. K.
, and
Whitaker
,
R. T.
,
2008
, “
A Fast Iterative Method for Eikonal Equations
,”
SIAM J. Sci. Comput.
,
30
(
5
), pp.
2512
2534
.
53.
Bak
,
S.
,
McLaughlin
,
J.
, and
Renzi
,
D.
,
2010
, “
Some Improvements for the Fast Sweeping Method
,”
SIAM J. Sci. Comput.
,
32
(
5
), pp.
2853
2874
.
54.
Yamasaki
,
S.
,
Nishiwaki
,
S.
,
Yamada
,
T.
,
Izui
,
K.
, and
Yoshimura
,
M.
,
2010
, “
A Structural Optimization Method Based on the Level set Method Using a new Geometry-Based re-Initialization Scheme
,”
Int. J. Numer. Methods Eng.
,
83
(
12
), pp.
1580
1624
.
55.
Heo
,
S.
,
Kim
,
J. H.
, and
Kim
,
Y. Y.
,
2003
, “
Significance of Distortion in Thin-Walled Closed Beam Section Design
,”
Int. J. Solids Struct.
,
40
(
3
), pp.
633
648
.
You do not currently have access to this content.