Abstract

Automated inverse design methods are critical to the development of metamaterial systems that exhibit special user-demanded properties. While machine learning approaches represent an emerging paradigm in the design of metamaterial structures, the ability to retrieve inverse designs on-demand remains lacking. Such an ability can be useful in accelerating optimization-based inverse design processes. This paper develops an inverse design framework that provides this capability through the novel usage of invertible neural networks (INNs). We exploit an INN architecture that can be trained to perform forward prediction over a set of high-fidelity samples and automatically learns the reverse mapping with guaranteed invertibility. We apply this INN for modeling the frequency response of periodic and aperiodic phononic structures, with the performance demonstrated on vibration suppression of drill pipes. Training and testing samples are generated by employing a transfer matrix method. The INN models provide competitive forward and inverse prediction performance compared to typical deep neural networks (DNNs). These INN models are used to retrieve approximate inverse designs for a queried non-resonant frequency range; the inverse designs are then used to initialize a constrained gradient-based optimization process to find a more accurate inverse design that also minimizes mass. The INN-initialized optimizations are found to be generally superior in terms of the queried property and mass compared to randomly initialized and inverse DNN-initialized optimizations. Particle swarm optimization with INN-derived initial points is then found to provide even better solutions, especially for the higher-dimensional aperiodic structures.

References

1.
Tanaka
,
M.
, and
Dulikravich
,
G. S.
,
1998
,
Inverse Problems in Engineering Mechanics
,
Elsevier
.
2.
Czech
,
C.
,
Guarneri
,
P.
,
Thyagaraja
,
N.
, and
Fadel
,
G.
,
2015
, “
Systematic Design Optimization of the Metamaterial Shear Beam of a Nonpneumatic Wheel for Low Rolling Resistance
,”
ASME J. Mech. Des.
,
137
(
4
), p.
041404
.
3.
Ma
,
W.
,
Cheng
,
F.
, and
Liu
,
Y.
,
2018
, “
Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials
,”
ACS Nano.
,
12
(
6
), pp.
6326
6334
.
4.
Delissen
,
A.
,
Radaelli
,
G.
,
Shaw
,
L.
,
Hopkins
,
J.
, and
Herder
,
J.
,
2018
, “
Design of an Isotropic Metamaterial With Constant Stiffness and Zero Poisson’s Ratio Over Large Deformations
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111405
.
5.
Chen
,
Y.
,
Zhu
,
J.
,
Xie
,
Y.
,
Feng
,
N.
, and
Liu
,
Q. H.
,
2019
, “
Smart Inverse Design of Graphene-Based Photonic Metamaterials by an Adaptive Artificial Neural Network
,”
Nanoscale
,
11
(
19
), pp.
9749
9755
.
6.
Liu
,
D.
,
Tan
,
Y.
,
Khoram
,
E.
, and
Yu
,
Z.
,
2018
, “
Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures
,”
ACS Photonics
,
5
(
4
), pp.
1365
1369
.
7.
Matthews
,
J.
,
Klatt
,
T.
,
Morris
,
C.
,
Seepersad
,
C. C.
,
Haberman
,
M.
, and
Shahan
,
D.
,
2016
, “
Hierarchical Design of Negative Stiffness Metamaterials Using a Bayesian Network Classifier
,”
ASME J. Mech. Des.
,
138
(
4
), p.
041404
.
8.
Sanchez-Lengeling
,
B.
,
Outeiral
,
C.
,
Guimaraes
,
G. L.
, and
Aspuru-Guzik
,
A.
,
2017
, “
Optimizing Distributions Over Molecular Space. An Objective-Reinforced Generative Adversarial Network for Inverse-Design Chemistry (Organic)
.” ChemRxiv, 2017.
9.
Zunger
,
A.
,
2018
, “
Inverse Design in Search of Materials With Target Functionalities
,”
Nat. Rev. Chem.
,
2
(
4
), pp.
1
16
.
10.
Molesky
,
S.
,
Lin
,
Z.
,
Piggott
,
A. Y.
,
Jin
,
W.
,
Vucković
,
J.
, and
Rodriguez
,
A. W.
,
2018
, “
Inverse Design in Nanophotonics
,”
Nat. Photonics
,
12
(
11
), pp.
659
670
.
11.
Liang
,
D.
,
Cheng
,
J.
,
Ke
,
Z.
, and
Ying
,
L.
,
2020
, “
Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet Neural Networks
,”
IEEE Signal Process. Mag.
,
37
(
1
), pp.
141
151
.
12.
Sanchez-Lengeling
,
B.
, and
Aspuru-Guzik
,
A.
,
2018
, “
Inverse Molecular Design Using Machine Learning: Generative Models for Matter Engineering
,”
Science
,
361
(
6400
), pp.
360
365
.
13.
Long
,
Y.
,
Ren
,
J.
,
Li
,
Y.
, and
Chen
,
H.
,
2019
, “
Inverse Design of Photonic Topological State Via Machine Learning
,”
Appl. Phys. Lett.
,
114
(
18
), p.
181105
.
14.
Mead
,
D.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995
,”
J. Sound. Vib.
,
190
(
3
), pp.
495
524
.
15.
Hussein
,
M. I.
,
Hamza
,
K.
,
Hulbert
,
G. M.
,
Scott
,
R. A.
, and
Saitou
,
K.
,
2006
, “
Multiobjective Evolutionary Optimization of Periodic Layered Materials for Desired Wave Dispersion Characteristics
,”
Struct. Multidiscipl. Optim.
,
31
(
1
), pp.
60
75
.
16.
Al Ba’ba’a
,
H.
,
Nouh
,
M.
, and
Singh
,
T.
,
2017
, “
Formation of Local Resonance Band Gaps in Finite Acoustic Metamaterials: A Closed-Form Transfer Function Model
,”
J. Sound. Vib.
,
410
(
0022-460X
), pp.
429
446
.
17.
Callanan
,
J.
, and
Nouh
,
M.
,
2019
, “
Emergence of Pseudo-Phononic Gaps in Periodically Architected Pendulums
,”
Front. Mater.
,
6
, p.
119
.
18.
Chen
,
Y.
,
Barnhart
,
M.
,
Chen
,
J.
,
Hu
,
G.
,
Sun
,
C.
, and
Huang
,
G.
,
2016
, “
Dissipative Elastic Metamaterials for Broadband Wave Mitigation at Subwavelength Scale
,”
Composite Structures
,
136
, pp.
358
371
.
19.
Aladwani
,
A.
, and
Nouh
,
M.
,
2021
, “
Strategic Damping Placement in Viscoelastic Bandgap Structures: Dissecting the Metadamping Phenomenon in Multiresonator Metamaterials
,”
ASME J. Appl. Mech.
,
88
(
2
), p.
021003
.
20.
Chronopoulos
,
D.
,
Antoniadis
,
I.
, and
Ampatzidis
,
T.
,
2017
, “
Enhanced Acoustic Insulation Properties of Composite Metamaterials Having Embedded Negative Stiffness Inclusions
,”
Extreme Mechanics Letters
,
12
, pp.
48
54
.
21.
Attarzadeh
,
M.
,
Callanan
,
J.
, and
Nouh
,
M.
,
2020
, “
Experimental Observation of Nonreciprocal Waves in a Resonant Metamaterial Beam
,”
Phys. Rev. Appl.
,
13
(
2
), p.
021001
.
22.
Maruyama
,
T.
,
Furuno
,
T.
,
Oda
,
Y.
,
Shen
,
J.
, and
Ohya
,
T.
,
2010
, “
Analysis and Design of Metamaterial Reflectarray Using Combination of Multilayer Mushroom-Structure
,”
2010 IEEE Antennas and Propagation Society International Symposium
,
Toronto, ON, Canada
,
July 11–17
,
IEEE
, pp.
1
4
.
23.
Bückmann
,
T.
,
Stenger
,
N.
,
Kadic
,
M.
,
Kaschke
,
J.
,
Frölich
,
A.
,
Kennerknecht
,
T.
,
Eberl
,
C.
,
Thiel
,
M.
, and
Wegener
,
M.
,
2012
, “
Tailored 3d Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography
,”
Adv. Mater.
,
24
(
20
), pp.
2710
2714
.
24.
Yoon
,
G.
,
Kim
,
I.
, and
Rho
,
J.
,
2016
, “
Challenges in Fabrication Towards Realization of Practical Metamaterials
,”
Microelectronic Engineering
,
163
, pp.
7
20
.
25.
Sui
,
N.
,
Yan
,
X.
,
Huang
,
T.-Y.
,
Xu
,
J.
,
Yuan
,
F.-G.
, and
Jing
,
Y.
,
2015
, “
A Lightweight Yet Sound-Proof Honeycomb Acoustic Metamaterial
,”
Appl. Phys. Lett.
,
106
(
17
), p.
171905
.
26.
Mamaghani
,
A. E.
,
Khadem
,
S.
, and
Bab
,
S.
,
2016
, “
Vibration Control of a Pipe Conveying Fluid Under External Periodic Excitation Using a Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1761
1795
.
27.
Liu
,
N.
,
Guo
,
H.
,
Fu
,
L.
,
Kaiser
,
S.
,
Schweizer
,
H.
, and
Giessen
,
H.
,
2008
, “
Three-Dimensional Photonic Metamaterials at Optical Frequencies
,”
Nat. Mater.
,
7
(
1
), pp.
31
37
.
28.
Gansel
,
J. K.
,
Thiel
,
M.
,
Rill
,
M. S.
,
Decker
,
M.
,
Bade
,
K.
,
Saile
,
V.
,
von Freymann
,
G.
,
Linden
,
S.
, and
Wegener
,
M.
,
2009
, “
Gold Helix Photonic Metamaterial as Broadband Circular Polarizer
,”
Science
,
325
(
5947
), pp.
1513
1515
.
29.
Chen
,
T.
,
Li
,
S.
, and
Sun
,
H.
,
2012
, “
Metamaterials Application in Sensing
,”
Sensors
,
12
(
3
), pp.
2742
2765
.
30.
Al Ba'ba'a
,
H.
, and
Nouh
,
M.
,
2019
, “
Control of Spatial Wave Profiles in Finite Lattices of Repelling Magnets
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
11
), p.
111015
.
31.
Amezquita-Sanchez
,
J. P.
,
Dominguez-Gonzalez
,
A.
,
Sedaghati
,
R.
,
de Jesus Romero-Troncoso
,
R.
, and
Osornio-Rios
,
R. A.
,
2014
, “
Vibration Control on Smart Civil Structures: A Review
,”
Mech. Adv. Mater. Struct.
,
21
(
1
), pp.
23
38
.
32.
Alkhatib
,
R.
, and
Golnaraghi
,
M.
,
2003
, “
Active Structural Vibration Control: A Review
,”
Shock Vib. Dig.
,
35
(
5
), p.
367
.
33.
Elias
,
S.
, and
Matsagar
,
V.
,
2017
, “
Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers
,”
Annual Reviews in Control
,
44
, pp.
129
156
.
34.
Balaji
,
P.
, and
SelvaKumar
,
K. K.
,
2020
, “
Applications of Nonlinearity in Passive Vibration Control: A Review
,”
J. Vib. Eng. Technol.
,
9
(
2
), pp.
183
213
.
35.
Delpero
,
T.
,
Schoenwald
,
S.
,
Zemp
,
A.
, and
Bergamini
,
A.
,
2016
, “
Structural Engineering of Three-Dimensional Phononic Crystals
,”
J. Sound Vib.
,
363
, pp.
156
165
.
36.
Borneman
,
J.
,
Chen
,
K.-P.
,
Kildishev
,
A.
, and
Shalaev
,
V.
,
2009
, “
Simplified Model for Periodic Nanoantennae: Linear Model and Inverse Design
,”
Opt. Exp.
,
17
(
14
), pp.
11607
11617
.
37.
Reinke
,
C. M.
,
Teofilo
,
M.
,
Su
,
M. F.
,
Sinclair
,
M. B.
, and
El-Kady
,
I.
,
2011
, “
Group-Theory Approach to Tailored Electromagnetic Properties of Metamaterials: An Inverse-Problem Solution
,”
Phys. Rev. E
,
83
(
6
), p.
066603
.
38.
Yang
,
Q.
,
Chen
,
X.
,
Li
,
Y.
,
Zhang
,
X.
,
Xu
,
Y.
,
Tian
,
Z.
,
Ouyang
,
C.
,
Gu
,
J.
,
Han
,
J.
, and
Zhang
,
W.
,
2017
, “
Aperiodic-Metamaterial-Based Absorber
,”
APL Mater.
,
5
(
9
), p.
096107
.
39.
Sakurai
,
A.
,
Yada
,
K.
,
Simomura
,
T.
,
Ju
,
S.
,
Kashiwagi
,
M.
,
Okada
,
H.
,
Nagao
,
T.
,
Tsuda
,
K.
, and
Shiomi
,
J.
,
2019
, “
Ultranarrow-Band Wavelength-Selective Thermal Emission With Aperiodic Multilayered Metamaterials Designed by Bayesian Optimization
,”
ACS Central Sci.
,
5
(
2
), pp.
319
326
.
40.
D’Alessandro
,
L.
,
Krushynska
,
A. O.
,
Ardito
,
R.
,
Pugno
,
N. M.
, and
Corigliano
,
A.
,
2020
, “
A Design Strategy to Match the Band Gap of Periodic and Aperiodic Metamaterials
,”
Sci. Rep.
,
10
(
1
), pp.
1
13
.
41.
So
,
S.
,
Badloe
,
T.
,
Noh
,
J.
,
Bravo-Abad
,
J.
, and
Rho
,
J.
,
2020
, “
Deep Learning Enabled Inverse Design in Nanophotonics
,”
Nanophotonics
,
9
(
5
), pp.
1041
1057
.
42.
Malkiel
,
I.
,
Nagler
,
A.
,
Mrejen
,
M.
,
Arieli
,
U.
,
Wolf
,
L.
, and
Suchowski
,
H.
,
2017
, “
Deep Learning for Design and Retrieval of Nano-Photonic Structures
,” preprint arXiv:1702.07949.
43.
Malkiel
,
I.
,
Mrejen
,
M.
,
Nagler
,
A.
,
Arieli
,
U.
,
Wolf
,
L.
, and
Suchowski
,
H.
,
2018
, “
Deep Learning for the Design of Nano-Photonic Structures
,”
2018 IEEE International Conference on Computational Photography (ICCP)
,
Pittsburgh, PA
,
May 4–6
,
IEEE
, pp.
1
14
.
44.
Malkiel
,
I.
,
Mrejen
,
M.
,
Nagler
,
A.
,
Arieli
,
U.
,
Wolf
,
L.
, and
Suchowski
,
H.
,
2018
, “
Plasmonic Nanostructure Design and Characterization Via Deep Learning
,”
Light: Sci. Appl.
,
7
(
1
), pp.
1
8
.
45.
Liu
,
Z.
,
Zhu
,
D.
,
Rodrigues
,
S. P.
,
Lee
,
K.-T.
, and
Cai
,
W.
,
2018
, “
Generative Model for the Inverse Design of Metasurfaces
,”
Nano Lett.
,
18
(
10
), pp.
6570
6576
.
46.
Mao
,
Y.
,
He
,
Q.
, and
Zhao
,
X.
,
2020
, “
Designing Complex Architectured Materials With Generative Adversarial Networks
,”
Sci. Adv.
,
6
(
17
), p.
eaaz4169
.
47.
Hodge
,
J. A.
,
Mishra
,
K. V.
, and
Zaghloul
,
A. I.
,
2019
, “
RF Metasurface Array Design Using Deep Convolutional Generative Adversarial Networks
,”
2019 IEEE International Symposium on Phased Array System & Technology (PAST)
,
Waltham, MA
,
Oct. 15–18
,
IEEE
, pp.
1
6
.
48.
Jiang
,
J.
,
Sell
,
D.
,
Hoyer
,
S.
,
Hickey
,
J.
,
Yang
,
J.
, and
Fan
,
J. A.
,
2019
, “
Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks
,”
ACS Nano
,
13
(
8
), pp.
8872
8878
.
49.
Ma
,
W.
,
Cheng
,
F.
,
Xu
,
Y.
,
Wen
,
Q.
, and
Liu
,
Y.
,
2019
, “
Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model With Semi-Supervised Learning Strategy
,”
Adv. Mater.
,
31
(
35
), p.
1901111
.
50.
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Wang
,
L.
, and
Chen
,
W.
,
2021
, “
Metaset: Exploring Shape and Property Spaces for Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031707
.
51.
Morris
,
C.
,
Bekker
,
L.
,
Haberman
,
M. R.
, and
Seepersad
,
C. C.
,
2018
, “
Design Exploration of Reliably Manufacturable Materials and Structures With Applications to Negative Stiffness Metamaterials and Microstereolithography
,”
ASME J. Mech. Des.
,
140
(
11
), p.
041251
.
52.
Bostanabad
,
R.
,
Chan
,
Y.-C.
,
Wang
,
L.
,
Zhu
,
P.
, and
Chen
,
W.
,
2019
, “
Globally Approximate Gaussian Processes for Big Data With Application to Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111402
.
53.
Ma
,
W.
,
Liu
,
Z.
,
Kudyshev
,
Z. A.
,
Boltasseva
,
A.
,
Cai
,
W.
, and
Liu
,
Y.
,
2020
, “
Deep Learning for the Design of Photonic Structures
,”
Nat. Photonics
,
15
(
2
), pp.
77
90
.
54.
Finol
,
D.
,
Lu
,
Y.
,
Mahadevan
,
V.
, and
Srivastava
,
A.
,
2019
, “
Deep Convolutional Neural Networks for Eigenvalue Problems in Mechanics
,”
Int. J. Numer. Methods Eng.
,
118
(
5
), pp.
258
275
.
55.
Hodge
,
J. A.
,
Mishra
,
K. V.
, and
Zaghloul
,
A. I.
,
2019
, “
Joint Multi-Layer Gan-Based Design of Tensorial RF Metasurfaces
,”
2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP)
,
Pittsburgh, PA
,
Oct. 13–16
,
IEEE
, pp.
1
6
.
56.
Yilmaz
,
E.
, and
German
,
B.
,
2020
, “
Conditional Generative Adversarial Network Framework for Airfoil Inverse Design
,”
AIAA Aviation 2020 Forum
,
Virtual
,
June 15–19
, p.
3185
.
57.
Nobari
,
A. H.
,
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
Range-Gan: Range-Constrained Generative Adversarial Network for Conditioned Design Synthesis
.” preprint arXiv:2103.06230.
58.
Nobari
,
A. H.
,
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
Pcdgan: A Continuous Conditional Diverse Generative Adversarial Network for Inverse Design
.” preprint arXiv:2106.03620.
59.
Behjat
,
A.
,
Oddiraju
,
M.
,
Attarzadeh
,
M. A.
,
Nouh
,
M.
, and
Chowdhury
,
S.
,
2020
, “
Metamodel Based Forward and Inverse Design for Passive Vibration Suppression
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
84010
,
Virtual
,
Aug. 17–19
,
American Society of Mechanical Engineers
, p.
V11BT11A024
.
60.
Ardizzone
,
L.
,
Kruse
,
J.
,
Wirkert
,
S.
,
Rahner
,
D.
,
Pellegrini
,
E. W.
,
Klessen
,
R. S.
,
Maier-Hein
,
L.
,
Rother
,
C.
, and
Köthe
,
U.
,
2018
, “
Analyzing Inverse Problems With Invertible Neural Networks
.” preprint arXiv:1808.04730.
61.
McCann
,
M. T.
,
Jin
,
K. H.
, and
Unser
,
M.
,
2017
, “
Convolutional Neural Networks for Inverse Problems in Imaging: A Review
,”
IEEE Signal Process. Mag.
,
34
(
6
), pp.
85
95
.
62.
Denker
,
A.
,
Schmidt
,
M.
,
Leuschner
,
J.
,
Maass
,
P.
, and
Behrmann
,
J.
,
2020
, “
Conditional Normalizing Flows for Low-Dose Computed Tomography Image Reconstruction
.” preprint arXiv:2006.06270.
63.
Xiao
,
M.
,
Zheng
,
S.
,
Liu
,
C.
,
Wang
,
Y.
,
He
,
D.
,
Ke
,
G.
,
Bian
,
J.
,
Lin
,
Z.
, and
Liu
,
T.-Y.
,
2020
, “
Invertible Image Rescaling
,”
European Conference on Computer Vision
,
Virtual
,
Aug. 23–28
,
Springer
, pp.
126
144
.
64.
Adler
,
T. J.
,
Ardizzone
,
L.
,
Vemuri
,
A.
,
Ayala
,
L.
,
Gröhl
,
J.
,
Kirchner
,
T.
,
Wirkert
,
S.
,
Kruse
,
J.
,
Rother
,
C.
,
Köthe
,
U.
, and
Maier-Hein
,
L.
,
2019
, “
Uncertainty-Aware Performance Assessment of Optical Imaging Modalities With Invertible Neural Networks
,”
Int. J. Comput. Assist. Radiol. Surg.
,
14
(
6
), pp.
997
1007
.
65.
Song
,
Y.
,
Meng
,
C.
, and
Ermon
,
S.
,
2019
, “
Mintnet: Building Invertible Neural Networks With Masked Convolutions
.” preprint arXiv:1907.07945.
66.
Al Ba'ba'a
,
H.
, and
Nouh
,
M.
,
2017
, “
An Investigation of Vibrational Power Flow in One-Dimensional Dissipative Phononic Structures
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021003
.
67.
Han
,
L.
,
Zhang
,
Y.
,
Ni
,
Z.-Q.
,
Zhang
,
Z.-M.
, and
Jiang
,
L.-H.
,
2012
, “
A Modified Transfer Matrix Method for the Study of the Bending Vibration Band Structure in Phononic Crystal Euler Beams
,”
Phys. B
,
407
(
23
), pp.
4579
4583
.
68.
Alsaffar
,
Y.
,
Sassi
,
S.
, and
Baz
,
A.
,
2018
, “
Band Gap Characteristics of Nonrotating Passive Periodic Drill String
,”
J. Vib. Acoust.
,
140
(
2
), p.
021004
.
69.
Sassi
,
S.
,
Renno
,
J.
,
Zhou
,
H.
, and
Baz
,
A.
,
2021
, “
Experimental Investigation of the Vibration Control of Nonrotating Periodic Drill Strings
,”
ASME J. Vib. Acoust.
,
143
(
6
), p.
061004
.
70.
Kelley
,
C. T.
,
1999
,
Iterative Methods for Optimization
,
SIAM
.
71.
Chowdhury
,
S.
,
Tong
,
W.
,
Messac
,
A.
, and
Zhang
,
J.
,
2013
, “
A Mixed-Discrete Particle Swarm Optimization Algorithm With Explicit Diversity-Preservation
,”
Struct. Multidiscipl. Optim.
,
47
(
3
), pp.
367
388
.
72.
Ghassemi
,
P.
,
Mehmani
,
A.
, and
Chowdhury
,
S.
,
2020
, “
Adaptive In Situ Model Refinement for Surrogate-Augmented Population-Based Optimization
,”
Struct. Multidiscipl. Optim.
,
62
, pp.
2011
2034
.
73.
Al Ba’ba’a
,
H.
,
Nouh
,
M.
, and
Singh
,
T.
,
2017
, “
Pole Distribution in Finite Phononic Crystals: Understanding Bragg-Effects Through Closed-Form System Dynamics
,”
J. Acoust. Soc. Am.
,
142
(
3
), pp.
1399
1412
.
You do not currently have access to this content.