Abstract

High trafficability and stability are the most two significant features of the forestry chassis. In this study, in order to improve surface trafficability, a novel articulated wheel-legged forestry chassis (AWLFC) is presented. To balance the trafficability and stability, a serial suspension system which is a combination with the active four-bar linkage articulated suspension (AFLAS) and passive V shape rocker-bogie is proposed. Then, parameter optimization with a comprehensive object function is implemented not only to enhance the trafficability and stability benefit of the structure but also to reduce the wheel slip. After that, through the flexible kinematic model based on screw theory, characteristics such as leveling ability and surface profile accessibility of the chassis are analyzed. The minimum accessible radius is obtained as 3088 mm, and the longitudinal and lateral leveling angle reaches to 22 deg and 28.7 deg separately. The new chassis performs better on leveling ability and surface profile accessibility than the forestry chassis in the current literature. Finally, through the results of simulation and prototype experiment, error rates related to the flexible analysis are reduced by 12.2% and 8.6% compared with the rigid model. Previously inaccessible forestry working environments can be available with the development of AWLFC.

References

1.
Sun
,
Z. B.
,
2016
, “
Stability Analysis and Anti-Rollover Research for a Six Wheel-Legged Forestry Machinery Chassis
,”
Doctoral thesis
,
Beijing Forestry University
,
Beijing, China
.
2.
Nakajima
,
S.
,
2011
, “
RT-Mover: A Rough Terrain Mobile Robot With a Simple Leg-Wheel Hybrid Mechanism
,”
Int. J. Rob. Res.
,
30
(
13
), pp.
1609
1626
.
3.
Bruzzone
,
L.
, and
Quaglia
,
G.
,
2012
, “
Review Article: Locomotion Systems for Ground Mobile Robots in Unstructured Environments
,”
Mech. Sci
,
3
(
2
), pp.
49
62
.
4.
Conduraru Slătineanu
,
A.
,
Doroftei
,
I.
, and
Conduraru
,
I.
,
2014
, “
An Overview on the Design of Mobile Robots With Hybrid Locomotion
,”
Adv. Mater. Res.
,
837
, pp.
555
560
.
5.
Luo
,
Q. S.
,
Wei
,
T. Q.
,
Mo
,
Y.
, and
Wang
,
Y.
,
2013
, “
Three-Bus Control System Design for Centipede-Like Robot
,”
Trans. Beijing Inst. Technol.
,
33
(
7
), pp.
698
703
.
6.
Li
,
Z. Q.
,
Ma
,
S. G.
,
Li
,
B.
,
Wang
,
M. H.
, and
Wang
,
Y. C.
,
2011
, “
Development of a Transformable Wheel-Track Robot With Self-Adaptive Ability
,”
J. Mech. Eng.
,
47
(
5
), pp.
1
10
.
7.
Li
,
Y. W.
,
Ge
,
S. R.
,
Zhu
,
H.
, and
Liu
,
J.
,
2010
, “
Obstacle-Surmounting Mechanism and Capability of Four-Track Robot With Two Swing Arms
,”
Robot
,
32
(
2
), pp.
157
165
.
8.
Siegwart
,
R.
,
Lamon
,
P.
,
Estier
,
T.
,
Lauria
,
M.
, and
Piguet
,
R.
,
2002
, “
Innovative Design for Wheeled Locomotion in Rough Terrain
,”
Rob. Auton. Syst.
,
40
(
2
), pp.
151
162
.
9.
Jun
,
S. K.
,
White
,
G. D.
, and
Krovi
,
V. N.
,
2006
, “
Kinetostatic Design Considerations for an Articulated Leg-Wheel Locomotion Subsystem
,”
J. Dyn. Syst. Meas. Control
,
128
(
1
), pp.
112
121
.
10.
Cheng
,
Y. J.
,
Wang
,
D.
,
Liu
,
J. H.
, and
Huang
,
Q. Q.
,
2020
, “
Steering Stability Analysis and Control Strategy of the Six Wheel-Legged Chassis for Forest
,”
U.P.B. Sci. Bull. Ser. D
,
82
(
4
), pp.
41
54
.
11.
Li
,
Z. L.
,
Liu
,
J. H.
,
Sun
,
Z. B.
, and
Yu
,
C. Z.
,
2019
, “
Dynamic Research and Analysis for a Wheel-Legged Harvester Chassis During Tilting Process
,”
Adv. Mech. Eng.
,
11
(
6
), pp.
1
9
.
12.
Eco log
,
2017
,
A New Generation of Harvesters With Everything Extra
,
Eco log
,
Sweden
,
1
4
.
13.
Ismoilov
,
A.
,
Sellgren
,
U.
,
Andersson
,
K.
, and
Löfgren
,
B.
,
2015
, “
A Comparison of Novel Chassis Suspended Machines for Sustainable Forestry
,”
J. Terramech.
,
58
, pp.
59
68
.
14.
Zhu
,
Y.
,
Kan
,
J. M.
,
Li
,
W. B.
, and
Kang
,
F.
,
2018
, “
A Novel Forestry Chassis With an Articulated Body With 3 Degrees of Freedom and Installed Luffing Wheel-Legs
,”
Adv. Mech. Eng.
,
10
(
1
), pp.
1
10
.
15.
Li
,
W. H.
, and
Kang
,
F.
,
2020
, “
Design and Analysis of Steering and Lifting Mechanisms for Forestry Vehicle Chassis
,”
Math. Prob. Eng.
, pp.
1
16
.
16.
Nakajima
,
S.
, and
Nakano
,
E.
,
2008
, “
Adaptive Gait for Large Rough Terrain of a Leg-Wheel Robot (1st Report, Gait Strategy)
,”
Trans. Jpn. Soc. Mech. Eng. Ser. C
,
20
(
5
), pp.
801
805
.
17.
Besseron
,
G.
,
Grand
,
C.
,
Ben Amar
,
F.
,
Plumet
,
F.
, and
Bidaud
,
P.
,
2005
, “
Stability Control of an Hybrid Wheel-Legged Robot
,”
8th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2005
,
London, UK
, pp.
533
540
.
18.
Ding
,
X. L.
,
Li
,
K. J.
, and
Xu
,
K.
,
2012
, “
Dynamics and Wheel's Slip Ratio of a Wheel-Legged Robot in Wheeled Motion Considering the Change of Height
,”
Chin. J. Mech. Eng.
,
25
(
5
), pp.
1060
1067
.
19.
SunSpiral
,
V.
,
Wheeler
,
D. W.
,
Chavez-Clemente
,
D.
, and
Mittman
,
D.
,
2012
, “
Development and Field Testing of the FootFall Planning System for the ATHLETE Robots
,”
J. Field Rob.
,
29
(
3
), pp.
483
505
.
20.
Smith
,
T. B.
, and
Chavez-Clemente
,
D.
,
2009
, “
A Practical Comparison of Motion Planning Techniques for Robotic Legs in Environments with Obstacles
,”
2009 3rd IEEE International Conference on Space Mission Challenges for Information Technology, SMC-IT 2009
,
Pasadena, CA
,
July 19–23
, pp.
155
162
.
21.
Sunspiral
,
V.
,
Chavez-Clemente
,
D.
,
Broxton
,
M.
,
Keely
,
L.
,
Mihelich
,
P.
,
Mittman
,
D.
, and
Collins
,
C.
,
2008
, “
FootFall: A Ground Based Operations Toolset Enabling Walking for the ATHLETE Rover
,”
Space 2008 Conference
,
San Diego, CA
,
Sept. 9–11
, pp.
1
14
.
22.
Stone
,
H. W.
,
1996
, “
Mars Pathfinder Microrover: A Low-Cost, Low-Power Spacecraft
,”
JPL TRS 1992 +
.
23.
Volpe
,
R.
,
Balaram
,
J.
,
Ohm
,
T.
, and
Ivlev
,
R.
,
1996
, “
Rocky 7: A Next Generation Mars Rover Prototype
,”
J. Adv. Rob.
,
11
(
4
), pp.
341
358
.
24.
Kuroda
,
Y.
,
Kondo
,
K.
,
Nakamura
,
K.
,
Kunii
,
Y.
, and
Kubota
,
T.
,
1999
, “
Low Power Mobility System
for
Micro Planetary Rover Micro5
,”
i-SAIRAS’99, ESTEC
,
Noordwijk, The Netherlands
,
June 1–3
.
25.
Thueer
,
T.
,
Krebs
,
A.
, and
Siegwart
,
R.
,
2006
, “
Comprehensive Locomotion Performance Evaluation of All-Terrain Robots
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, pp.
4260
4265
.
26.
Sreenivasan
,
S. V.
, and
Waldron
,
K. J.
,
1996
, “
Displacement Analysis of an Actively Articulated Wheeled Vehicle Configuration With Extensions to Motion Planning on Uneven Terrain
,”
ASME J. Mech. Des.
,
118
(
2
), pp.
312
320
.
27.
Alamdari
,
A.
, and
Krovi
,
V.
,
2014
, “
Active Reconfiguration for Performance Enhancement in Articulated Wheeled Vehicles
,”
ASME 2014 Dynamic Systems and Control Conference
,
San Antonio, TX
,
Oct. 22–24
, pp.
1
10
.
28.
Alamdari
,
A.
,
Zhou
,
X.
, and
Krovi
,
V.
,
2013
, “
Kinematic Modeling, Analysis and Control of Highly Reconfigurable Articulated Wheeled Vehicles
,”
ASME 2013 International Design Engineering Technical Conferences and Computers in Engineering Conference
,
Portland
,
Aug. 4–7
, pp.
1
7
.
29.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2016
, “
Design of Articulated Leg-Wheel Subsystem by Kinetostatic Optimization
,”
Mech. Mach. Theory
,
100
, pp.
222
234
.
30.
Cordes
,
F.
,
Babu
,
A.
, and
Kirchner
,
F.
,
2017
, “
Static Force Distribution and Orientation Control for a Rover With an Actively Articulated Suspension System
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
5219
5224
.
31.
Cordes
,
F.
,
Kirchner
,
F.
, and
Babu
,
A.
,
2018
, “
Design and Field Testing of a Rover With an Actively Articulated Suspension System in a Mars Analog Terrain
,”
J. Field Rob.
,
35
(
3
), pp.
1149
1181
.
32.
Zou
,
Q.
,
Zhang
,
D.
,
Luo
,
X. L.
,
Huang
,
G. Y.
,
Li
,
L. J.
, and
Zhang
,
H. Q.
,
2020
, “
Enumeration and Optimum Design of a Class of Translational Parallel Mechanisms With Prismatic and Parallelogram Joints
,”
Mech. Mach. Theory
,
150
, p.
103846
.
33.
Yu
,
J. J.
,
Liu
,
X. J.
, and
Ding
,
X. L.
,
2008
,
Mathematical Foundations of Robot Mechanism
,
China Machine Press
,
Beijing
.
34.
Liu
,
S. Z.
,
2015
,
Dynamics of Lower-Mobility Parallel Manipulators
,
Science Press
,
Beijing
.
35.
Lashgarian Azad
,
N.
,
Khajepour
,
A.
, and
Mcphee
,
J.
,
2007
, “
Robust State Feedback Stabilization of Articulated Steer Vehicles
,”
Veh. Syst. Dyn.
,
45
(
3
), pp.
249
275
.
36.
Reid
,
W.
,
Pérez-Grau
,
F. J.
,
Göktoğan
,
A. H.
, and
Sukkarieh
,
S.
,
2016
, “
Actively Articulated Suspension for a Wheel-on-Leg Rover Operating on a Martian Analog Surface
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Sweden
,
May 16–21
, pp.
5596
5602
.
37.
Nariman-Zadeh
,
N.
,
Felezi
,
M.
,
Jamali
,
A.
, and
Ganji
,
M.
,
2009
, “
Pareto Optimal Synthesis of Four-Bar Mechanisms for Path Generation
,”
Mech. Mach. Theory
,
44
(
1
), pp.
180
191
.
38.
Lundbäck
,
M.
,
Persson
,
H.
,
Häggström
,
C.
, and
Nordfjell
,
T.
,
2021
, “
Global Analysis of the Slope of Forest Land
,”
For.: Int. J. For. Res.
,
94
(
1
), pp.
54
69
.
You do not currently have access to this content.