Abstract

This paper aims to present the topological structure design and kinematic analysis of a novel double-ring truss deployable satellite antenna mechanism. First, a new topological scheme and a new rectangular prism deployable linkage unit are proposed for constructing the kind of antenna mechanisms. Second, the degree-of-freedom (DOF) of the deployable unit and the antenna mechanism are analyzed based on structure decomposition and screw theory. Third, the kinematic model of the double-ring truss deployable antenna mechanism is established based on its structural characteristics. Finally, a typical numerical example is used to illustrate the effectiveness of the designed mechanism and the established kinematic model. The new double-ring truss deployable antenna mechanism consists of the units with the better structural symmetry and has simpler joint axis layouts, comparing with the same type of most existing mechanisms.

References

1.
Escrig
,
F.
, and
Valcarcel
,
J. P.
,
1993
, “
Geometry of Expandable Space Structures
,”
Int. J. Space Struct.
,
8
(
1–2
), pp.
71
84
.
2.
Hanaor
,
A.
, and
Levy
,
R.
,
2001
, “
Evaluation of Deployable Structures for Space Enclosures
,”
Int. J. Space Struct.
,
16
(
4
), pp.
211
229
.
3.
Kiper
,
G.
,
Söylemez
,
E.
, and
Kişisel
,
A. U. Ö.
,
2008
, “
A Family of Deployable Polygons and Polyhedra
,”
Mech. Mach. Theory
,
43
(
5
), pp.
627
640
.
4.
St-Onge
,
D.
, and
Gosselin
,
C.
,
2016
, “
Synthesis and Design of a One Degree-of-Freedom Planar Deployable Mechanism With a Large Expansion Ratio
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021025
.
5.
Chen
,
Y.
, and
You
,
Z.
,
2009
, “
Two-Fold Symmetrical 6R Foldable Frame and Its Bifurcations
,”
Int. J. Solids Struct.
,
46
(
25–26
), pp.
4504
4514
.
6.
Liu
,
S. Y.
, and
Chen
,
Y.
,
2009
, “
Myard Linkage and Its Mobile Assemblies
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1950
1963
.
7.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
8.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
A Spatial Eight-Bar Linkage and Its Association With the Deployable Platonic Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021010
.
9.
Li
,
R.
,
Yao
,
Y.-A.
, and
Kong
,
X.
,
2017
, “
Reconfigurable Deployable Polyhedral Mechanism Based on Extended Parallelogram Mechanism
,”
Mech. Mach. Theory
,
116
, pp.
467
480
.
10.
Li
,
R.
,
Yao
,
Y.-A.
, and
Ding
,
X.
,
2018
, “
A Family of Reconfigurable Deployable Polyhedral Mechanisms Based on Semiregular and Johnson Polyhedra
,”
Mech. Mach. Theory
,
126
, pp.
344
358
.
11.
Lu
,
S.
,
Zlatanov
,
D.
, and
Ding
,
X.
,
2017
, “
Approximation of Cylindrical Surfaces With Deployable Bennett Networks
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021001
.
12.
Song
,
X.
,
Deng
,
Z.
,
Guo
,
H.
,
Liu
,
R.
,
Li
,
L.
, and
Liu
,
R.
,
2017
, “
Networking of Bennett Linkages and Its Application on Deployable Parabolic Cylindrical Antenna
,”
Mech. Mach. Theory
,
109
, pp.
95
125
.
13.
Ding
,
X.
,
Yang
,
Y.
, and
Dai
,
J. S.
,
2013
, “
Design and Kinematic Analysis of a Novel Prism Deployable Mechanism
,”
Mech. Mach. Theory
,
63
, pp.
35
49
.
14.
Huang
,
H.
,
Li
,
B.
,
Zhu
,
J.
, and
Qi
,
X.
,
2016
, “
A New Family of Bricard-Derived Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
034503
.
15.
Deng
,
Z.
,
Huang
,
H.
,
Li
,
B.
, and
Liu
,
R.
,
2011
, “
Synthesis of Deployable/Foldable Single Loop Mechanisms With Revolute Joints
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031006
.
16.
Xu
,
Y.
,
Chen
,
Y.
,
Liu
,
W.
,
Ma
,
X.
,
Yao
,
J.
, and
Zhao
,
Y.
,
2020
, “
Degree of Freedom and Dynamic Analysis of the Multi-Loop Coupled Passive-Input Overconstrained Deployable Tetrahedral Mechanisms for Truss Antennas
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011010
.
17.
Takamatsu
,
K. A.
, and
Onoda
,
J.
,
1991
, “
New Deployable Truss Concepts for Large Antenna Structures or Solar Concentrators
,”
J. Spacecr. Rockets
,
28
(
3
), pp.
330
338
.
18.
Xu
,
Y.
,
Guan
,
F.
,
Chen
,
J.
, and
Zheng
,
Y.
,
2012
, “
Structural Design and Static Analysis of a Double-Ring Deployable Truss for Mesh Antennas
,”
Acta Astronaut.
,
81
(
2
), pp.
545
554
.
19.
Meguro
,
A.
,
Ishikawa
,
H.
, and
Tsujihata
,
A.
,
2006
, “
Study on Ground Verification for Large Deployable Modular Structures
,”
J. Spacecr. Rockets
,
43
(
4
), pp.
780
787
.
20.
Lopatin
,
A.
,
Rutkovskaya
,
M.
, and
Gantovnik
,
V.
,
2008
, “
Accuracy Analysis of the Reflective Surface of the Umbrella-Type Antenna
,”
J. Spacecr. Rockets
,
45
(
1
), pp.
149
151
.
21.
Wang
,
Y.
,
Liu
,
R.
,
Yang
,
H.
,
Cong
,
Q.
, and
Guo
,
H.
,
2015
, “
Design and Deployment Analysis of Modular Deployable Structure for Large Antennas
,”
J. Spacecr. Rockets
,
52
(
4
), pp.
1
11
.
22.
Dai
,
L.
,
Guan
,
F.
, and
Guest
,
J. K.
,
2014
, “
Structural Optimization and Model Fabrication of a Double-Ring Deployable Antenna Truss
,”
Acta Astronaut.
,
94
(
2
), pp.
843
851
.
23.
Li
,
T.
,
2012
, “
Deployment Analysis and Control of Deployable Space Antenna
,”
Aerosp. Sci. Technol.
,
18
(
1
), pp.
42
47
.
24.
Thomson
,
M. W.
,
2002
, “
The AstroMesh Deployable Reflector
,”
Antennas and Propagation Society International Symposium
,
Orlando, FL
,
July 11–16, 1999
,
IEEE
, pp.
1516
1519
.
25.
Datashvili
,
L.
,
Endler
,
S.
,
Wei
,
B.
,
Baier
,
H.
,
Langer
,
H.
,
Friemel
,
M.
,
Tsignadze
,
N.
, and
Santiago-Prowald
,
J.
,
2013
, “
Study of Mechanical Architectures of Large Deployable Space Antenna Apertures: From Design to Tests
,”
CEAS Space J.
,
5
(
3
), pp.
169
184
.
26.
Qi
,
X.
,
Huang
,
H.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
A Large Ring Deployable Mechanism for Space Satellite Antenna
,”
Aerosp. Sci. Technol.
,
58
, pp.
498
510
.
27.
You
,
Z.
,
2000
, “
Deployable Structure of Curved Profile for Space Antennas
,”
J. Aerosp. Eng.
,
13
(
4
), pp.
139
143
.
28.
Qi
,
X.
,
Huang
,
H.
,
Miao
,
Z.
,
Li
,
B.
, and
Deng
,
Z.
,
2017
, “
Design and Mobility Analysis of Large Deployable Mechanisms Based on Plane-Symmetric Bricard Linkage
,”
ASME J. Mech. Des.
,
139
(
2
), p.
022302
.
29.
Han
,
B.
,
Xu
,
Y.
,
Yao
,
J.
,
Zheng
,
D.
,
Li
,
Y.
, and
Zhao
,
Y.
,
2019
, “
Design and Analysis of a Scissors Double-Ring Truss Deployable Mechanism for Space Antennas
,”
Aerosp. Sci. Technol.
,
93
, p.
105357
.
30.
Shi
,
C.
,
Guo
,
H.
,
Zheng
,
Z.
,
Li
,
M.
,
Liu
,
R.
, and
Deng
,
Z.
,
2018
, “
Conceptual Configuration Synthesis and Topology Structure Analysis of Double-Layer Hoop Deployable Antenna Unit
,”
Mech. Mach. Theory
,
129
, pp.
232
260
.
31.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Cable-Stiffened Pantographic Deployable Structures Part 2: Mesh Reflector
,”
AIAA J.
,
35
(
8
), pp.
1348
1355
.
32.
Huang
,
Z.
,
Li
,
Q.
, and
Ding
,
H.
,
2013
,
Theory of Parallel Mechanisms
,
Springer
,
Dordrecht, Netherlands
.
You do not currently have access to this content.