Abstract

Passive dynamic mechanisms can perform simple robotic tasks without requiring actuators and control. In previous research, a computational design method was introduced that integrates dynamic simulation to evaluate and evolve configurations of such mechanisms. It was shown to find multiple solutions of passive dynamic brachiating robots (Stöckli and Shea, 2017, “Automated Synthesis of Passive Dynamic Brachiating Robots Using a Simulation-Driven Graph Grammar Method,” J. Mech. Des. 139(9), p. 092301). However, these solutions are limited, since bodies are modeled only by their inertia properties and thus lack a shape embodiment. This paper presents a method to generate rigid-body topologies based on given inertia properties. The rule-based topology optimization method presented guarantees that the topology is manifold, meaning that it has no disconnected parts, while still connecting all joints that need to be part of the body. Furthermore, collisions with the environment, as well as with other bodies, during their predefined motion trajectories are avoided. A collision matrix enables efficient collision detection as well as the calculation of the swept area of one body in the design space of another body by only one matrix–vector multiplication. The presented collision avoidance method proves to be computationally efficient and can be adopted for other topology optimization problems. The method is shown to solve different tasks, including a reference problem as well as passive dynamic brachiating mechanisms. Combining the presented methods with the simulation-driven method from Stöckli and Shea (2017, “Automated Synthesis of Passive Dynamic Brachiating Robots Using a Simulation-Driven Graph Grammar Method,” J. Mech. Des. 139(9), p. 092301), the computational design-to-fabrication of passive dynamic systems is now possible and solutions are provided as STL files ready to be 3D-printed directly.

References

1.
Mcgeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Rob. Res.
,
9
(
2
), pp.
62
82
. 10.1177/027836499000900206
2.
McGeer
,
T.
,
1990
, “
Passive Walking With Knees
,”
Proceedings of the 1990 IEEE International Conference on Robotics and Automation
,
Cincinnati, OH
,
IEEE
, pp.
1640
1645
.
3.
Gomes
,
M.
, and
Ruina
,
A.
,
2011
, “
Walking Model With No Energy Cost
,”
Phys. Rev. E
,
83
(
3
), p.
032901
. 10.1103/PhysRevE.83.032901
4.
Gomes
,
M. W.
,
2005
, “
Collisionless Rigid Body Locomotion Models and Physically Based Homotopy Methods for Finding Periodic Motions in High Degree of Freedom Models
,”
Ph.D. thesis
,
Department of Mechanical Engineering, Cornell University
,
Ithaca, NY
.
5.
Gomes
,
M. W.
, and
Ruina
,
A. L.
,
2005
, “
A Five-Link 2D Brachiating Ape Model With Life-Like Zero-Energy-Cost Motions
,”
J. Theor. Biol.
,
237
(
3
), pp.
265
278
. 10.1016/j.jtbi.2005.04.014
6.
Stöckli
,
F.
, and
Shea
,
K.
,
2017
, “
Automated Synthesis of Passive Dynamic Brachiating Robots Using a Simulation-Driven Graph Grammar Method
,”
ASME J. Mech. Des.
,
139
(
9
), p.
092301
. 10.1115/1.4037245
7.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
. 10.1007/s00158-013-0978-6
8.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
. 10.1016/0045-7825(88)90086-2
9.
Eschenauer
,
H. A.
,
Kobelev
,
V. V.
, and
Schumacher
,
A.
,
1994
, “
Bubble Method for Topology and Shape Optimization of Structures
,”
Struct. Optim.
,
8
(
1
), pp.
42
51
. 10.1007/BF01742933
10.
Bourdin
,
B.
, and
Chambolle
,
A.
,
2003
, “
Design-Dependent Loads in Topology Optimization
,”
ESAIM: Control Optim. Calc. Var.
,
9
, pp.
19
48
. 10.1051/cocv:2002070
11.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
. 10.1007/BF01650949
12.
Zhou
,
M.
, and
Rozvany
,
G.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
. 10.1016/0045-7825(91)90046-9
13.
Mlejnek
,
H.
,
1992
, “
Some Aspects of the Genesis of Structures
,”
Struct. Optim.
,
5
(
12
), pp.
64
69
. 10.1007/BF01744697
14.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
21
(
2
), pp.
120
127
. 10.1007/s001580050176
15.
Andreassen
,
E.
,
Clausen
,
A.
,
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Efficient Topology Optimization in Matlab Using 88 Lines of Code
,”
Struct. Multidiscipl. Optim.
,
43
(
1
), pp.
1
16
. 10.1007/s00158-010-0594-7
16.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
. 10.1002/nme.1620240207
17.
Kita
,
E.
, and
Toyoda
,
T.
,
2000
, “
Structural Design Using Cellular Automata
,”
Struct. Multidiscipl. Optim.
,
19
(
1
), pp.
64
73
. 10.1007/s001580050086
18.
Missoum
,
S.
,
Gürdal
,
Z.
, and
Setoodeh
,
S.
,
2005
, “
Study of a New Local Update Scheme for Cellular Automata in Structural Design
,”
Struct. Multidiscipl. Optim.
,
29
(
2
), pp.
103
112
. 10.1007/s00158-004-0464-2
19.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
. 10.1016/0021-9991(88)90002-2
20.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
, Vol.
3
,
Cambridge University Press
,
Cambridge
.
21.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
. 10.1016/S0045-7825(02)00559-5
22.
Svanberg
,
K.
, and
Werme
,
M.
,
2006
, “
Topology Optimization by a Neighbourhood Search Method Based on Efficient Sensitivity Calculations
,”
Int. J. Numer. Methods Eng.
,
67
(
12
), pp.
1670
1699
. 10.1002/nme.1677
23.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
,
1994
, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1005
1012
. 10.1115/1.2919480
24.
Hajela
,
P.
,
Lee
,
E.
, and
Lin
,
C.-Y.
,
1993
,
Genetic Algorithms in Structural Topology Optimization
,
Springer
,
New York
, pp.
117
133
.
25.
Baldock
,
R.
, and
Shea
,
K.
,
2006
, “
Structural Topology Optimization of Braced Steel Frameworks Using Genetic Programming
,”
Workshop of the European Group for Intelligent Computing in Engineering
,
Springer
,
New York
, pp.
54
61
.
26.
Stolpe
,
M.
, and
Bendsøe
,
M. P.
,
2011
, “
Global Optima for the Zhou–Rozvany Problem
,”
Struct. Multidiscipl. Optim.
,
43
(
2
), pp.
151
164
. 10.1007/s00158-010-0574-y
27.
Mattheck
,
C.
, and
Burkhardt
,
S.
,
1990
, “
A New Method of Structural Shape Optimization Based on Biological Growth
,”
Int. J. Fatigue
,
12
(
3
), pp.
185
190
. 10.1016/0142-1123(90)90094-U
28.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
. 10.1016/0045-7949(93)90035-C
29.
Ansola
,
R.
,
Veguería
,
E.
,
Canales
,
J.
, and
Tárrago
,
J. A.
,
2007
, “
A Simple Evolutionary Topology Optimization Procedure for Compliant Mechanism Design
,”
Finite Elements Anal. Des.
,
44
(
1–2
), pp.
53
62
. 10.1016/j.finel.2007.09.002
30.
Ansola
,
R.
,
Veguería
,
E.
,
Maturana
,
A.
, and
Canales
,
J.
,
2010
, “
3d Compliant Mechanisms Synthesis by a Finite Element Addition Procedure
,”
Finite Elements Anal. Des.
,
46
(
9
), pp.
760
769
. 10.1016/j.finel.2010.04.006
31.
Huang
,
X.
, and
Xie
,
Y.-M.
,
2010
, “
A Further Review of ESO Type Methods for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
41
(
5
), pp.
671
683
. 10.1007/s00158-010-0487-9
32.
Kang
,
Z.
,
Zhang
,
C.
, and
Cheng
,
G.
,
2005
, “
Structural Topology Optimization Considering Mass Moment of Inertia
,”
Proceedings of the 6th World Congresses of Structural and Multidisciplinary Optimization
,
Rio de Janeiro
,
Paper No. 4611
.
33.
Bächer
,
M.
,
Whiting
,
E.
,
Bickel
,
B.
, and
Sorkine-Hornung
,
O.
,
2014
, “
Spin-It: Optimizing Moment of Inertia for Spinnable Objects
,”
ACM Trans. Graph.
,
33
(
4
), p.
96
. 10.1145/2601097.2601157
34.
Moore
,
M.
, and
Wilhelms
,
J.
,
1988
, “
Collision Detection and Response for Computer Animation
,”
ACM Siggraph Computer Graphics
, Vol.
22
,
ACM
,
Atlanta, GA
, pp.
289
298
.
35.
Flores
,
P.
, and
Ambrósio
,
J.
,
2010
, “
On the Contact Detection for Contact-Impact Analysis in Multibody Systems
,”
Multibody Syst. Dyn.
,
24
(
1
), pp.
103
122
. 10.1007/s11044-010-9209-8
36.
Lin
,
M.
, and
Gottschalk
,
S.
,
1998
, “
Collision Detection Between Geometric Models: A Survey
,”
Proceedings of IMA Conference on Mathematics of Surfaces
,
Birmingham, UK
, Vol.
1
, pp.
602
608
.
37.
Jiménez
,
P.
,
Thomas
,
F.
, and
Torras
,
C.
,
2001
, “
3D Collision Detection: A Survey
,”
Comput. Graph.
,
25
(
2
), pp.
269
285
. 10.1016/S0097-8493(00)00130-8
38.
Cohen
,
J. D.
,
Lin
,
M. C.
,
Manocha
,
D.
, and
Ponamgi
,
M.
,
1995
, “
I-Collide: An Interactive and Exact Collision Detection System for Large-Scale Environments
,”
Proceedings of the 1995 Symposium on Interactive 3D Graphics
,
Monterey, CA
,
ACM
, pp.
189
ff
.
39.
Mirtich
,
B.
,
1998
, “
V-Clip: Fast and Robust Polyhedral Collision Detection
,”
ACM Trans. Graph.
,
17
(
3
), pp.
177
208
. 10.1145/285857.285860
40.
Studer
,
C.
,
Leine
,
R.
, and
Glocker
,
C.
,
2008
, “
Step Size Adjustment and Extrapolation for Time-Stepping Schemes in Non-Smooth Dynamics
,”
Int. J. Numer. Methods Eng.
,
76
(
11
), pp.
1747
1781
. 10.1002/nme.2383
41.
He
,
K.
,
Dong
,
S.
, and
Zhou
,
Z.
,
2007
, “
Multigrid Contact Detection Method
,”
Phys. Rev. E
,
75
(
3
), p.
036710
. 10.1103/PhysRevE.75.036710
42.
Redon
,
S.
,
Kheddar
,
A.
, and
Coquillart
,
S.
,
2002
,
Fast Continuous Collision Detection Between Rigid Bodies, Computer Graphics Forum
, Vol.
21
,
Wiley Online Library
,
New York
, pp.
279
287
.
43.
Pfeiffer
,
F.
, and
Glocker
,
C.
,
1996
,
Multibody Dynamics With Unilateral Contacts
, Vol.
9
,
John Wiley & Sons
,
New York
.
44.
Glocker
,
C.
,
2013
,
Set-Valued Force Laws: Dynamics of Non-Smooth Systems
, Vol.
1
,
Springer Science & Business Media
,
New York
.
45.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
. 10.1115/1.2912617
46.
Fiorini
,
P.
, and
Shiller
,
Z.
,
1998
, “
Motion Planning in Dynamic Environments Using Velocity Obstacles
,”
Int. J. Rob. Res.
,
17
(
7
), pp.
760
772
. 10.1177/027836499801700706
47.
Fox
,
D.
,
Burgard
,
W.
, and
Thrun
,
S.
,
1997
, “
The Dynamic Window Approach to Collision Avoidance
,”
IEEE Rob. Autom. Mag.
,
4
(
1
), pp.
23
33
. 10.1109/100.580977
48.
Van Den Berg
,
J.
,
Guy
,
S. J.
,
Lin
,
M.
, and
Manocha
,
D.
,
2011
,
Reciprocal N-Body Collision Avoidance
,
Springer
,
New York
, pp.
3
19
.
49.
Fiorini
,
P.
, and
Shiller
,
Z.
,
1996
,
Robot Motion Planning in Dynamic Environments
,
Springer
,
New York
, pp.
237
248
.
50.
Thomaszewski
,
B.
,
Coros
,
S.
,
Gauge
,
D.
,
Megaro
,
V.
,
Grinspun
,
E.
, and
Gross
,
M.
,
2014
, “
Computational Design of Linkage-Based Characters
,”
ACM Trans. Graph.
,
33
(
4
), p.
64
. 10.1145/2601097.2601143
51.
Sims
,
K.
,
1994
, “
Evolving Virtual Creatures
,”
SIGGRAPH ’94 Proceedings
,
Orlando, FL
, pp.
15
22
.
52.
Leger
,
C.
,
1999
, “
Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach
,”
Ph.D. thesis
,
The Robotics Institute, Carnegie Mellon University
,
Pittsburgh, PA
.
53.
Stöckli
,
F.
,
Modica
,
F.
, and
Shea
,
K.
,
2016
, “
Designing Passive Dynamic Walking Robots for Additive Manufacture
,”
Rapid Prototyping J.
,
22
(
5
), pp.
842
847
. 10.1108/RPJ-11-2015-0170
You do not currently have access to this content.