Abstract
A new method for optimizing the layout of device-routing systems is presented. Gradient-based topology optimization techniques are used to simultaneously optimize both device locations and routing paths of device interconnects. In addition to geometric considerations, this method supports optimization based on system behavior by including physics-based objectives and constraints. Multiple physics domains are modeled using lumped parameter and finite element models. A geometric projection for devices of arbitrary polygonal shape is developed along with sensitivity analysis. Two thermal-fluid systems are optimized to demonstrate the use of this method.
Issue Section:
Design Automation
References
1.
Schafer
, M.
, and Lengauer
, T.
, 1999
, “Automated Layout Generation and Wiring Area Estimation for 3D Electronic Modules
,” ASME J. Mech. Des.
, 123
(3
), pp. 330
–336
. 10.1115/1.13714782.
Dong
, H.
, Guarneri
, P.
, and Fadel
, G.
, 2011
, “Bi-Level Approach to Vehicle Component Layout With Shape Morphing
,” ASME J. Mech. Des.
, 133
(4
), p. 041008
. 10.1115/1.40039163.
Panesar
, A.
, Brackett
, D.
, Ashcroft
, I.
, Wildman
, R.
, and Hague
, R.
, 2015
, “Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes
,” ASME J. Mech. Des.
, 137
(11
), p. 111414
. 10.1115/1.40309964.
Yin
, S.
, Cagan
, J.
, and Hodges
, P.
, 2004
, “Layout Optimization of Shapeable Components With Extended Pattern Search Applied to Transmission Design
,” ASME J. Mech. Des.
, 126
(1
), pp. 188
–191
. 10.1115/1.16376635.
Landon
, M. D.
, and Balling
, R. J.
, 1994
, “Optimal Packaging of Complex Parametric Solids According to Mass Property Criteria
,” ASME J. Mech. Des.
, 116
(2
), pp. 375
–381
. 10.1115/1.29193896.
Szykman
, S.
, Cagan
, J.
, and Weisser
, P.
, 1998
, “An Integrated Approach to Optimal Three Dimensional Layout and Routing
,” ASME J. Mech. Des.
, 120
(3
), pp. 510
–512
. 10.1115/1.28291807.
Szykman
, S.
, and Cagan
, J.
, 1997
, “Constrained Three-Dimensional Component Layout Using Simulated Annealing
,” ASME J. Mech. Des.
, 119
(1
), pp. 28
–35
. 10.1115/1.28287858.
Aladahalli
, C.
, Cagan
, J.
, and Shimada
, K.
, 2006
, “Objective Function Effect Based Pattern Search—Theoretical Framework Inspired by 3D Component Layout
,” ASME J. Mech. Des.
, 129
(3
), pp. 243
–254
. 10.1115/1.24060959.
Yin
, S.
, and Cagan
, J.
, 2000
, “An Extended Pattern Search Algorithm for Three-Dimensional Component Layout
,” ASME J. Mech. Des.
, 122
(1
), pp. 102
–108
. 10.1115/1.53355010.
Szykman
, S.
, and Cagan
, J.
, 1996
, “Synthesis of Optimal Nonorthogonal Routes
,” ASME J. Mech. Des.
, 118
(3
), pp. 419
–424
. 10.1115/1.282690211.
Park
, J.-H.
, and Storch
, R.
, 2002
, “Pipe-Routing Algorithm Development: Case Study of a Ship Engine Room Design
,” Expert Syst. Appl. (UK)
, 23
(3
), pp. 299
–309
. 10.1016/S0957-4174(02)00049-012.
Ren
, T.
, Zhu
, Z.-L.
, Dimirovski
, G.
, Gao
, Z.-H.
, Sun
, X.-H.
, and Yu
, H.
, 2014
, “A New Pipe Routing Method for Aero-Engines Based on Genetic Algorithm
,” Proc. Inst. Mech. Eng., Part G (J. Aerosp. Eng.)
, 228
(3
), pp. 424
–434
. 10.1177/095441001247413413.
Qu
, Y.
, Jiang
, D.
, Gao
, G.
, and Huo
, Y.
, 2016
, “Pipe Routing Approach for Aircraft Engines Based on Ant Colony Optimization
,” J. Aerosp. Eng.
, 29
(3
), p. 04015057
. 10.1061/(ASCE)AS.1943-5525.000054314.
Van der Velden
, C.
, Bil
, C.
, Yu
, X.
, and Smith
, A.
, 2007
, “An Intelligent System for Automatic Layout Routing in Aerospace Design
,” Innovations Syst. Softw. Eng.
, 3
(2
), pp. 117
–128
. 10.1007/s11334-007-0021-415.
Liu
, C.
, 2018
, “Optimal Design of High-Rise Building Wiring Based on Ant Colony Optimization
,” Cluster Comput.
, 22
(5
), pp. 1
–8
. 10.1007/s10586-018-2195-y16.
Wu
, L.
, Tian
, X.
, Wang
, H.
, Liu
, Q.
, and Xiao
, W.
, 2019
, “Improved Ant Colony Optimization Algorithm and Its Application to Solve Pipe Routing Design
,” Assembly Automat.
, 39
(1
), pp. 45
–57
. 10.1108/AA-02-2018-02217.
Sigmund
, O.
, 2001
, “A 99 Line Topology Optimization Code Written in Matlab
,” Struct. Multidiscip. Optim.
, 21
(2
), pp. 120
–127
. 10.1007/s00158005017618.
Kazemi
, H.
, Vaziri
, A.
, and Norato
, J. A.
, 2018
, “Topology Optimization of Structures Made of Discrete Geometric Components With Different Materials
,” ASME J. Mech. Des.
, 140
(11
), p. 111401
. 10.1115/1.404062419.
Iga
, A.
, Nishiwaki
, S.
, Izui
, K.
, and Yoshimura
, M.
, 2009
, “Topology Optimization for Thermal Conductors Considering Design-Dependent Effects, including Heat Conduction and Convection
,” Int. J. Heat Mass Transf.
, 52
(11–12
), pp. 2721
–2732
. 10.1016/j.ijheatmasstransfer.2008.12.01320.
Dirker
, J.
, and Meyer
, J. P.
, 2013
, “Topology Optimization for An Internal Heat-Conduction Cooling Scheme in a Square Domain for High Heat Flux Applications
,” ASME J. Heat Transf.
, 135
(11
), p. 111010
. 10.1115/1.402461521.
de Kruijf
, N.
, Zhou
, S.
, Li
, Q.
, and Mai
, Y.-W.
, 2007
, “Topological Design of Structures and Composite Materials With Multiobjectives
,” Int. J. Solids Struct.
, 44
(22–23
), pp. 7092
–7109
. 10.1016/j.ijsolstr.2007.03.02822.
Takezawa
, A.
, Yoon
, G. H.
, Jeong
, S. H.
, Kobashi
, M.
, and Kitamura
, M.
, 2014
, “Structural Topology Optimization With Strength and Heat Conduction Constraints
,” Comput. Methods Appl. Mech. Eng.
, 276
, pp. 341
–361
. 10.1016/j.cma.2014.04.00323.
Kang
, Z.
, and James
, K. A.
, 2019
, “Multimaterial Topology Design for Optimal Elastic and Thermal Response With Material-Specific Temperature Constraints
,” Int. J. Numer. Methods Eng.
, 117
(10
), pp. 1019
–1037
. 10.1002/nme.598924.
James
, K.
, Kennedy
, G.
, and Martins
, J.
, 2014
, “Concurrent Aerostructural Topology Optimization of a Wing Box
,” Comput. Struct.
, 134
, pp. 1
–17
. 10.1016/j.compstruc.2013.12.00725.
Dunning
, P.
, Stanford
, B.
, and Kim
, H.
, 2015
, “Coupled Aerostructural Topology Optimization Using a Level Set Method for 3D Aircraft Wings
,” Struct. Multidiscip. Optim.
, 51
(5
), pp. 1113
–1132
. 10.1007/s00158-014-1200-126.
Oktay
, E.
, Akay
, H.
, and Merttopcuoglu
, O.
, 2011
, “Parallelized Structural Topology Optimization and CFD Coupling for Design of Aircraft Wing Structures
,” Comput. Fluids (UK)
, 49
(1
), pp. 141
–145
. 10.1016/j.compfluid.2011.05.00527.
Zhu
, J.
, Zhang
, W.
, Beckers
, P.
, Chen
, Y.
, and Guo
, Z.
, 2008
, “Simultaneous Design of Components Layout and Supporting Structures Using Coupled Shape and Topology Optimization Technique
,” Struct. Multidiscip. Optim.
, 36
(1
), pp. 29
–41
. 10.1007/s00158-007-0155-x28.
Zhu
, J.-H.
, Guo
, W.-J.
, Zhang
, W.-H.
, and Liu
, T.
, 2017
, “Integrated Layout and Topology Optimization Design of Multi-Frame and Multi-Component Fuselage Structure Systems
,” Struct. Multidiscipl. Optim.
, 56
(1
), pp. 21
–45
. 10.1007/s00158-016-1645-529.
Zegard
, T.
, and Paulino
, G. H.
, 2016
, “Bridging Topology Optimization and Additive Manufacturing
,” Struct. Multidiscip. Optim.
, 53
(1
), pp. 175
–192
. 10.1007/s00158-015-1274-430.
Tejani
, G. G.
, Savsani
, V. J.
, Patel
, V. K.
, and Savsani
, P. V.
, 2018
, “Size, Shape, and Topology Optimization of Planar and Space Trusses Using Mutation-Based Improved Metaheuristics
,” J. Comput. Des. Eng.
, 5
(2
), pp. 198
–214
. 10.1016/j.jcde.2017.10.00131.
Zhang
, X. S.
, Paulino
, G. H.
, and Ramos
, A. S.
, 2018
, “Multi-Material Topology Optimization With Multiple Volume Constraints: A General Approach Applied to Ground Structures With Material Nonlinearity
,” Struct. Multidiscip. Optim.
, 57
(1
), pp. 161
–182
. 10.1007/s00158-017-1768-332.
Norato
, J.
, Bell
, B.
, and Tortorelli
, D.
, 2015
, “A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,” Comput. Methods Appl. Mech. Eng.
, 293
, pp. 306
–27
. 10.1016/j.cma.2015.05.00533.
Zhang
, S.
, Norato
, J. A.
, Gain
, A. L.
, and Lyu
, N.
, 2016
, “A Geometry Projection Method for the Topology Optimization of Plate Structures
,” Struct. Multidiscip. Opti.
, 54
(5
), pp. 1173
–1190
. 10.1007/s00158-016-1466-634.
Bendsøe
, M.
, 1989
, “Optimal Shape Design As a Material Distribution Problem
,” Struct. Optim.
, 1
(4
), pp. 193
–202
. 10.1007/BF0165094935.
Hughes
, T. J. R.
, 2000
, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
, Dover Publications
, Mineola, NY
.36.
Hormann
, K.
, and Agathos
, A.
, 2001
, “The Point in Polygon Problem for Arbitrary Polygons
,” Comput. Geometry: Theory Appl.
, 20
(3
), pp. 131
–144
. 10.1016/S0925-7721(01)00012-837.
Rennels
, D. C.
, and Hudson
, H. M.
, 2012
, Pipe Flow: A Practical and Comprehensive Guide
.38.
Tarquin
, A. J.
, and Dowdy
, J.
, 1989
, “Optimal Pump Operation in Water Distribution
,” J. Hydraul. Eng.
, 115
(2
), pp. 158
–168
. 10.1061/(ASCE)0733-9429(1989)115:2(158)39.
Nakayama
, Y.
, 2018
, Chapter 7 – Flow in Pipes
,” Introduction to Fluid Mechanics
, 2nd ed., Y.
Nakayama
, ed., Butterworth-Heinemann
, Oxford, UK
, pp. 135
–161
.40.
Martins
, J.
, and Hwang
, J.
, 2013
, “Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models
,” AIAA J.
, 51
(11
), pp. 2582
–2599
. 10.2514/1.J05218441.
Sunday
, D.
, 2012
, “Distance Between 3D Lines & Segments
.” http://geomalgorithms.com/a07-_distance.htmlCopyright © 2020 by ASME
You do not currently have access to this content.