Abstract

A new method for optimizing the layout of device-routing systems is presented. Gradient-based topology optimization techniques are used to simultaneously optimize both device locations and routing paths of device interconnects. In addition to geometric considerations, this method supports optimization based on system behavior by including physics-based objectives and constraints. Multiple physics domains are modeled using lumped parameter and finite element models. A geometric projection for devices of arbitrary polygonal shape is developed along with sensitivity analysis. Two thermal-fluid systems are optimized to demonstrate the use of this method.

References

1.
Schafer
,
M.
, and
Lengauer
,
T.
,
1999
, “
Automated Layout Generation and Wiring Area Estimation for 3D Electronic Modules
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
330
336
. 10.1115/1.1371478
2.
Dong
,
H.
,
Guarneri
,
P.
, and
Fadel
,
G.
,
2011
, “
Bi-Level Approach to Vehicle Component Layout With Shape Morphing
,”
ASME J. Mech. Des.
,
133
(
4
), p.
041008
. 10.1115/1.4003916
3.
Panesar
,
A.
,
Brackett
,
D.
,
Ashcroft
,
I.
,
Wildman
,
R.
, and
Hague
,
R.
,
2015
, “
Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111414
. 10.1115/1.4030996
4.
Yin
,
S.
,
Cagan
,
J.
, and
Hodges
,
P.
,
2004
, “
Layout Optimization of Shapeable Components With Extended Pattern Search Applied to Transmission Design
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
188
191
. 10.1115/1.1637663
5.
Landon
,
M. D.
, and
Balling
,
R. J.
,
1994
, “
Optimal Packaging of Complex Parametric Solids According to Mass Property Criteria
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
375
381
. 10.1115/1.2919389
6.
Szykman
,
S.
,
Cagan
,
J.
, and
Weisser
,
P.
,
1998
, “
An Integrated Approach to Optimal Three Dimensional Layout and Routing
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
510
512
. 10.1115/1.2829180
7.
Szykman
,
S.
, and
Cagan
,
J.
,
1997
, “
Constrained Three-Dimensional Component Layout Using Simulated Annealing
,”
ASME J. Mech. Des.
,
119
(
1
), pp.
28
35
. 10.1115/1.2828785
8.
Aladahalli
,
C.
,
Cagan
,
J.
, and
Shimada
,
K.
,
2006
, “
Objective Function Effect Based Pattern Search—Theoretical Framework Inspired by 3D Component Layout
,”
ASME J. Mech. Des.
,
129
(
3
), pp.
243
254
. 10.1115/1.2406095
9.
Yin
,
S.
, and
Cagan
,
J.
,
2000
, “
An Extended Pattern Search Algorithm for Three-Dimensional Component Layout
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
102
108
. 10.1115/1.533550
10.
Szykman
,
S.
, and
Cagan
,
J.
,
1996
, “
Synthesis of Optimal Nonorthogonal Routes
,”
ASME J. Mech. Des.
,
118
(
3
), pp.
419
424
. 10.1115/1.2826902
11.
Park
,
J.-H.
, and
Storch
,
R.
,
2002
, “
Pipe-Routing Algorithm Development: Case Study of a Ship Engine Room Design
,”
Expert Syst. Appl. (UK)
,
23
(
3
), pp.
299
309
. 10.1016/S0957-4174(02)00049-0
12.
Ren
,
T.
,
Zhu
,
Z.-L.
,
Dimirovski
,
G.
,
Gao
,
Z.-H.
,
Sun
,
X.-H.
, and
Yu
,
H.
,
2014
, “
A New Pipe Routing Method for Aero-Engines Based on Genetic Algorithm
,”
Proc. Inst. Mech. Eng., Part G (J. Aerosp. Eng.)
,
228
(
3
), pp.
424
434
. 10.1177/0954410012474134
13.
Qu
,
Y.
,
Jiang
,
D.
,
Gao
,
G.
, and
Huo
,
Y.
,
2016
, “
Pipe Routing Approach for Aircraft Engines Based on Ant Colony Optimization
,”
J. Aerosp. Eng.
,
29
(
3
), p.
04015057
. 10.1061/(ASCE)AS.1943-5525.0000543
14.
Van der Velden
,
C.
,
Bil
,
C.
,
Yu
,
X.
, and
Smith
,
A.
,
2007
, “
An Intelligent System for Automatic Layout Routing in Aerospace Design
,”
Innovations Syst. Softw. Eng.
,
3
(
2
), pp.
117
128
. 10.1007/s11334-007-0021-4
15.
Liu
,
C.
,
2018
, “
Optimal Design of High-Rise Building Wiring Based on Ant Colony Optimization
,”
Cluster Comput.
,
22
(
5
), pp.
1
8
. 10.1007/s10586-018-2195-y
16.
Wu
,
L.
,
Tian
,
X.
,
Wang
,
H.
,
Liu
,
Q.
, and
Xiao
,
W.
,
2019
, “
Improved Ant Colony Optimization Algorithm and Its Application to Solve Pipe Routing Design
,”
Assembly Automat.
,
39
(
1
), pp.
45
57
. 10.1108/AA-02-2018-022
17.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
. 10.1007/s001580050176
18.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J. A.
,
2018
, “
Topology Optimization of Structures Made of Discrete Geometric Components With Different Materials
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111401
. 10.1115/1.4040624
19.
Iga
,
A.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yoshimura
,
M.
,
2009
, “
Topology Optimization for Thermal Conductors Considering Design-Dependent Effects, including Heat Conduction and Convection
,”
Int. J. Heat Mass Transf.
,
52
(
11–12
), pp.
2721
2732
. 10.1016/j.ijheatmasstransfer.2008.12.013
20.
Dirker
,
J.
, and
Meyer
,
J. P.
,
2013
, “
Topology Optimization for An Internal Heat-Conduction Cooling Scheme in a Square Domain for High Heat Flux Applications
,”
ASME J. Heat Transf.
,
135
(
11
), p.
111010
. 10.1115/1.4024615
21.
de Kruijf
,
N.
,
Zhou
,
S.
,
Li
,
Q.
, and
Mai
,
Y.-W.
,
2007
, “
Topological Design of Structures and Composite Materials With Multiobjectives
,”
Int. J. Solids Struct.
,
44
(
22–23
), pp.
7092
7109
. 10.1016/j.ijsolstr.2007.03.028
22.
Takezawa
,
A.
,
Yoon
,
G. H.
,
Jeong
,
S. H.
,
Kobashi
,
M.
, and
Kitamura
,
M.
,
2014
, “
Structural Topology Optimization With Strength and Heat Conduction Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
276
, pp.
341
361
. 10.1016/j.cma.2014.04.003
23.
Kang
,
Z.
, and
James
,
K. A.
,
2019
, “
Multimaterial Topology Design for Optimal Elastic and Thermal Response With Material-Specific Temperature Constraints
,”
Int. J. Numer. Methods Eng.
,
117
(
10
), pp.
1019
1037
. 10.1002/nme.5989
24.
James
,
K.
,
Kennedy
,
G.
, and
Martins
,
J.
,
2014
, “
Concurrent Aerostructural Topology Optimization of a Wing Box
,”
Comput. Struct.
,
134
, pp.
1
17
. 10.1016/j.compstruc.2013.12.007
25.
Dunning
,
P.
,
Stanford
,
B.
, and
Kim
,
H.
,
2015
, “
Coupled Aerostructural Topology Optimization Using a Level Set Method for 3D Aircraft Wings
,”
Struct. Multidiscip. Optim.
,
51
(
5
), pp.
1113
1132
. 10.1007/s00158-014-1200-1
26.
Oktay
,
E.
,
Akay
,
H.
, and
Merttopcuoglu
,
O.
,
2011
, “
Parallelized Structural Topology Optimization and CFD Coupling for Design of Aircraft Wing Structures
,”
Comput. Fluids (UK)
,
49
(
1
), pp.
141
145
. 10.1016/j.compfluid.2011.05.005
27.
Zhu
,
J.
,
Zhang
,
W.
,
Beckers
,
P.
,
Chen
,
Y.
, and
Guo
,
Z.
,
2008
, “
Simultaneous Design of Components Layout and Supporting Structures Using Coupled Shape and Topology Optimization Technique
,”
Struct. Multidiscip. Optim.
,
36
(
1
), pp.
29
41
. 10.1007/s00158-007-0155-x
28.
Zhu
,
J.-H.
,
Guo
,
W.-J.
,
Zhang
,
W.-H.
, and
Liu
,
T.
,
2017
, “
Integrated Layout and Topology Optimization Design of Multi-Frame and Multi-Component Fuselage Structure Systems
,”
Struct. Multidiscipl. Optim.
,
56
(
1
), pp.
21
45
. 10.1007/s00158-016-1645-5
29.
Zegard
,
T.
, and
Paulino
,
G. H.
,
2016
, “
Bridging Topology Optimization and Additive Manufacturing
,”
Struct. Multidiscip. Optim.
,
53
(
1
), pp.
175
192
. 10.1007/s00158-015-1274-4
30.
Tejani
,
G. G.
,
Savsani
,
V. J.
,
Patel
,
V. K.
, and
Savsani
,
P. V.
,
2018
, “
Size, Shape, and Topology Optimization of Planar and Space Trusses Using Mutation-Based Improved Metaheuristics
,”
J. Comput. Des. Eng.
,
5
(
2
), pp.
198
214
. 10.1016/j.jcde.2017.10.001
31.
Zhang
,
X. S.
,
Paulino
,
G. H.
, and
Ramos
,
A. S.
,
2018
, “
Multi-Material Topology Optimization With Multiple Volume Constraints: A General Approach Applied to Ground Structures With Material Nonlinearity
,”
Struct. Multidiscip. Optim.
,
57
(
1
), pp.
161
182
. 10.1007/s00158-017-1768-3
32.
Norato
,
J.
,
Bell
,
B.
, and
Tortorelli
,
D.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
27
. 10.1016/j.cma.2015.05.005
33.
Zhang
,
S.
,
Norato
,
J. A.
,
Gain
,
A. L.
, and
Lyu
,
N.
,
2016
, “
A Geometry Projection Method for the Topology Optimization of Plate Structures
,”
Struct. Multidiscip. Opti.
,
54
(
5
), pp.
1173
1190
. 10.1007/s00158-016-1466-6
34.
Bendsøe
,
M.
,
1989
, “
Optimal Shape Design As a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
. 10.1007/BF01650949
35.
Hughes
,
T. J. R.
,
2000
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover Publications
,
Mineola, NY
.
36.
Hormann
,
K.
, and
Agathos
,
A.
,
2001
, “
The Point in Polygon Problem for Arbitrary Polygons
,”
Comput. Geometry: Theory Appl.
,
20
(
3
), pp.
131
144
. 10.1016/S0925-7721(01)00012-8
37.
Rennels
,
D. C.
, and
Hudson
,
H. M.
,
2012
,
Pipe Flow: A Practical and Comprehensive Guide
.
38.
Tarquin
,
A. J.
, and
Dowdy
,
J.
,
1989
, “
Optimal Pump Operation in Water Distribution
,”
J. Hydraul. Eng.
,
115
(
2
), pp.
158
168
. 10.1061/(ASCE)0733-9429(1989)115:2(158)
39.
Nakayama
,
Y.
,
2018
,
Chapter 7 – Flow in Pipes
,”
Introduction to Fluid Mechanics
, 2nd ed.,
Y.
Nakayama
, ed.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
135
161
.
40.
Martins
,
J.
, and
Hwang
,
J.
,
2013
, “
Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models
,”
AIAA J.
,
51
(
11
), pp.
2582
2599
. 10.2514/1.J052184
41.
Sunday
,
D.
,
2012
, “
Distance Between 3D Lines & Segments
.” http://geomalgorithms.com/a07-_distance.html
You do not currently have access to this content.