Abstract

Optimization of dynamic engineering systems generally requires problem formulations that account for the coupling between embodiment design and control system design simultaneously. Such formulations are commonly known as combined optimal design and control (co-design) problems, and their application to deterministic systems is well established in the literature through a variety of methods. However, an issue that has not been addressed in the co-design literature is the impact of the inherent uncertainties within a dynamic system on its integrated design solution. Accounting for these uncertainties transforms the standard, deterministic co-design problem into a stochastic one, thus requiring appropriate stochastic optimization approaches for its solution. This paper serves as the starting point for research on stochastic co-design problems by proposing and solving a novel problem formulation based on robust design optimization (RDO) principles. Specifically, a co-design method known as multidisciplinary dynamic system design optimization (MDSDO) is used as the basis for an RDO problem formulation and implementation. The robust objective and inequality constraints are computed per usual as functions of their first-order-approximated means and variances, whereas analysis-based equality constraints are evaluated deterministically at the means of the random decision variables. The proposed stochastic co-design problem formulation is then implemented for two case studies, with the results indicating the importance of the robust approach on the integrated design solutions and performance measures.

References

1.
Reyer
,
J. A.
, and
Papalambros
,
P. Y.
,
2002
, “
Combined Optimal Design and Control With Application to an Electric DC Motor
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
183
191
. 10.1115/1.1460904
2.
Fathy
,
H. K.
,
Papalambros
,
P. Y.
,
Ulsoy
,
A. G.
, and
Hrovat
,
D.
,
2003
, “
Nested Plant/Controller Optimization With Application to Combined Passive/Active Automotive Suspensions
,”
American Control Conference
,
Vol. 4, IEEE, Silver Spring, MD
,
June 4–6
, pp.
3375
3380
.
3.
Peters
,
D. L.
,
Papalambros
,
P.
, and
Ulsoy
,
A.
,
2011
, “
Control Proxy Functions for Sequential Design and Control Optimization
,”
ASME J. Mech. Des.
,
133
(
9
), p.
091007
. 10.1115/1.4004792
4.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
. 10.1115/1.4027335
5.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
2016
, “
Multidisciplinary Dynamic Optimization of Horizontal Axis Wind Turbine Design
,”
Struct. Multidiscip. Optim.
,
53
(
1
), pp.
15
27
. 10.1007/s00158-015-1308-y
6.
Azad
,
S.
,
Behtash
,
M.
,
Houshmand
,
A.
, and
Alexander-Ramos
,
M.
,
2017
, “
Comprehensive PHEV Powertrain Co-Design Performance Studies Using MDSDO
,”
World Congress of Structural and Multidisciplinary Optimisation
,
Springer, Berlin
,
June 5–9
, pp.
83
97
.
7.
Azad
,
S.
,
Behtash
,
M.
,
Houshmand
,
A.
, and
Alexander-Ramos
,
M. J.
,
2019
, “
PHEV Powertrain Co-design with Vehicle Performance Considerations Using MDSDO
,”
Struct. Multidiscip. Optim.
,
60
(
3
), pp.
1
15
. 10.1007/s00158-019-02264-0
8.
Alyaqout
,
S. F.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2007
, “
Coupling in Design an Robust Control Optimization
,”
European Control Conference
,
Kos, Greece
,
July 2–5
, pp.
1414
1421
.
9.
Alyaqout
,
S.
,
Papalambros
,
P.
, and
Ulsoy
,
A. G.
,
2012
, “
Combined Design and Robust Control of a Vehicle Passive/Active Suspension
,”
Int. J. Vehicle Des.
,
59
(
4
), pp.
315
330
. 10.1504/IJVD.2012.048975
10.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2018
, “
Robust MDSDO for Co-Design of Stochastic Dynamic Systems
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers
,
New York
, p.
V02AT03A002
.
11.
Mattson
,
C.
, and
Messac
,
A.
,
2003
, “
Handling Equality Constraints in Robust Design Optimization
,”
44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Norfolk, VA
,
Apr. 7–10
, p.
1780
.
12.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
. 10.2514/1.J052182
13.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2017
, “
Nested and Simultaneous Solution Strategies for General Combined Plant and Controller Design Problems
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 2A of 43rd Design Automation Conference
,
Cleveland, OH
,
Aug. 6–9
,
American Society of Mechanical Engineers
,
New York
.
14.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2013
, “
Wave Energy Extraction Maximization in Irregular Ocean Waves Using Pseudospectral Methods
,”
ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 4–7
,
American Society of Mechanical Engineers
,
New York
, p.
V03AT03A018
.
15.
Benson
,
D.
, Feb
2005
, “
A Gauss Pseudospectral Transcription for Optimal Control
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
16.
Biegler
,
L. T.
,
2010
,
Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes
, Vol.
10
,
SIAM
,
Philadelphia, PA
.
17.
Gunst
,
R. F.
,
1996
, “
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,”
Technometrics
,
38
(
3
), pp.
284
286
. 10.1080/00401706.1996.10484509
18.
Yadav
,
O. P.
,
Bhamare
,
S. S.
, and
Rathore
,
A.
,
2010
, “
Reliability-Based Robust Design Optimization: A Multi-Objective Framework Using Hybrid Quality Loss Function
,”
Qual. Reliab. Eng. Int.
,
26
(
1
), pp.
27
41
. 10.1002/(ISSN)1099-1638
19.
Taguchi
,
G.
,
1988
, “
Introduction to Quality Engineering: Designing Quality Into Products and Processes
,”
Qual. Reliab. Eng. Int.
,
4
(
2
), p.
198
.
20.
Zang
,
C.
,
Friswell
,
M.
, and
Mottershead
,
J.
,
2005
, “
A Review of Robust Optimal Design and Its Application in Dynamics
,”
Comput. Struct.
,
83
(
4–5
), pp.
315
326
. 10.1016/j.compstruc.2004.10.007
21.
Paiva
,
R. M.
,
Crawford
,
C.
, and
Suleman
,
A.
,
2014
, “
Robust and Reliability-Based Design Optimization Framework for Wing Design
,”
AIAA J.
,
52
(
4
), pp.
711
724
. 10.2514/1.J052161
22.
Bertsimas
,
D.
,
Brown
,
D. B.
, and
Caramanis
,
C.
,
2011
, “
Theory and Applications of Robust Optimization
,”
SIAM Rev.
,
53
(
3
), pp.
464
501
. 10.1137/080734510
23.
Park
,
G.-J.
,
Lee
,
T.-H.
,
Lee
,
K. H.
, and
Hwang
,
K.-H.
,
2006
, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
. 10.2514/1.13639
24.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
. 10.1007/s00158-003-0368-6
25.
Lee
,
I.
,
Choi
,
K.
,
Du
,
L.
, and
Gorsich
,
D.
,
2008
, “
Dimension Reduction Method for Reliability-Based Robust Design Optimization
,”
Comput. Struct.
,
86
(
13–14
), pp.
1550
1562
. 10.1016/j.compstruc.2007.05.020
26.
Marler
,
R. T.
,
2005
, “
A Study of Multi-Objective Optimization Methods for Engineering Applications
,” Ph.D. thesis,
The University of Iowa
,
Iowa
.
27.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
, “
Probability, Reliability, and Statistical Methods in Engineering Design
,”
Bautechbik
,
77
(
5
), p.
379
. 10.1002/bate.200002930
28.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
,
1993
, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
,
115
(
1
), pp.
74
80
. 10.1115/1.2919328
29.
Rangavajhala
,
S.
,
Mullur
,
A.
, and
Messac
,
A.
,
2007
, “
The Challenge of Equality Constraints in Robust Design Optimization: Examination and New Approach
,”
Struct. Multidiscip. Optim.
,
34
(
5
), pp.
381
401
. 10.1007/s00158-007-0104-8
30.
Li
,
X.
,
Nair
,
P. B.
,
Zhang
,
Z.
,
Gao
,
L.
, and
Gao
,
C.
,
2014
, “
Aircraft Robust Trajectory Optimization Using Nonintrusive Polynomial Chaos
,”
J. Aircr.
,
51
(
5
), pp.
1592
1603
. 10.2514/1.C032474
31.
Topputo
,
F.
, and
Zhang
,
C.
,
2014
, “Survey of Direct Transcription for Low-Thrust Space Trajectory Optimization with Applications,”
Abstract and Applied Analysis
, Vol.
2014
,
Hindawi
,
London
.
32.
Pardo
,
D.
,
Möller
,
L.
,
Neunert
,
M.
,
Winkler
,
A. W.
, and
Buchli
,
J.
,
2016
, “
Evaluating Direct Transcription and Nonlinear Optimization Methods for Robot Motion Planning
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
946
953
. 10.1109/LRA.2016.2527062
33.
Betts
,
J. T.
, and
Huffman
,
W. P.
,
1998
, “
Mesh Refinement in Direct Transcription Methods for Optimal Control
,”
Optim. Control Appl. Methods
,
19
(
1
), pp.
1
21
. 10.1002/(ISSN)1099-1514
34.
Patterson
,
M. A.
, and
Rao
,
A. V.
,
2014
, “
GPOPS-II: A MATLAB Software for Solving Multiple-phase Optimal Control Problems Using Hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming
,”
ACM Trans. Math. Softw. (TOMS)
,
41
(
1
), pp.
1
.
37
10.1145/2684421
35.
Cottrill
,
G. C.
, March
2012
, “
Hybrid Solution of Stochastic Optimal Control Problems Using Gauss Pseudospectral Method and Generalized Polynomial Chaos Algorithms
,” Ph.D. thesis,
Air Force Institute of Technology
,
Wright-Patterson Air Force Base, OH
.
36.
Patterson
,
M.
, and
Rao
,
A.
,
2016
, “
Gpops-II: A General-Purpose MATLAB Software for Solving Multiple-Phase Optimal Control Problems (version 2.3)
,”
University of Florida
,
Gainesville, FL
.
37.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Programm.
,
106
(
1
), pp.
25
57
. 10.1007/s10107-004-0559-y
38.
Bulirsch
,
R.
,
Nerz
,
E.
,
Pesch
,
H. J.
, and
von Stryk
,
O.
,
1993
, “
Combining Direct and Indirect Methods in Optimal Control: Range Maximization of a Hang Glider
,”
Optimal Control
,
Springer, Berlin
, pp.
273
288
.
39.
Lorenz
,
J.
,
1985
, “
Numerical Solution of the Minimum-time Flight of a Glider Through a Thermal by Use of Multiple Shooting Methods
,”
Optim. Control Appl. Methods
,
6
(
2
), pp.
125
140
. 10.1002/(ISSN)1099-1514
40.
Huang
,
X.
,
Pippalapalli
,
K.
, and
Chudoba
,
B.
,
2006
, “
Aerodynamic Analysis of a Class II High Performance Hang Glider-The ATOS
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 9–12
, p.
446
.
You do not currently have access to this content.