Thermally conductive filled polymers enable the creation of multifunctional structures that offer both anchoring points for the embedded actuators, as well as heat-dissipation functions, in order to facilitate the miniaturization of devices. However, there are two important challenges in creating these structures: (1) sufficient thermal management to prevent failure of the actuator and (2) the ability of the actuator to survive the manufacturing process. This paper describes a systematic approach for design of multifunctional structures with embedded heat-generating components using an in-mold assembly process to address these challenges. For the first challenge, the development of appropriate thermal models is presented along with incorporation of in-mold assembly process constraints in the optimization process. For the second challenge, a simulation of the molding process is presented and demonstrated to enable the determination of processing conditions ensuring survival of the in-mold assembly process for the embedded actuator. Thus, the design methodology described in this paper was utilized to concurrently optimize the choice of material, size of the structure, and processing conditions in order to demonstrate the feasibility of creating multifunctional structures from thermally conductive polymers by embedding actuators through an in-mold assembly process.

1.
Kim
,
K. J.
, and
Tadokoro
,
S.
, 2007,
Electroactive Polymers for Robotic Applications
,
Springer
,
New York
.
2.
Rosmarin
,
J. B.
, and
Asada
,
H. H.
, 2008, “
Synergistic Design of a Humanoid Hand With Hybrid DC Motor – SMA Array Actuators Embedded in the Palm
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Pasadena, CA, pp.
773
778
.
3.
Pappafotis
,
N.
,
Bejgerowski
,
W.
,
Gullapalli
,
R.
,
Simard
,
J. M.
,
Gupta
,
S. K.
, and
Desai
,
J. P.
, 2008, “
Towards Design and Fabrication of a Miniature MRI-Compatible Robot for Applications in Neurosurgery
,”
Proceedings of the ASME 2008 IDETC/CIE
, New York, NY.
4.
Bejgerowski
,
W.
,
Ananthanarayanan
,
A.
,
Mueller
,
D.
, and
Gupta
,
S. K.
, 2009, “
Integrated Product and Process Design for a Flapping Wing Drive-Mechanism
,”
ASME J. Mech. Des.
0161-8458,
131
(
6
), p.
061006
.
5.
Weber
,
E. H.
,
Clingerman
,
M. L.
, and
King
,
J. A.
, 2003, “
Thermally Conductive Nylon 6,6 and Polycarbonate Based Resins. I. Synergistic Effects of Carbon Fillers
,”
J. Appl. Polym. Sci.
0021-8995,
88
(
1
), pp.
112
122
.
6.
Bahadur
,
R.
, and
Bar-Cohen
,
A.
, 2005, “
Thermal Performance Limits of Polymer Composite Pin Fin Heat Sinks
,”
Proceedings of the 55th Electronic Components and Technology Conference
, Vol.
2
, pp.
1720
1727
.
7.
Bahadur
,
R.
, 2005, “
Characterization, Modeling and Optimization of Polymer Composite Pin Fins
,” Ph.D. thesis, Mechanical Engineering Department, University of Maryland, College Park, MD.
8.
Dogruoz
,
M. B.
, and
Arik
,
M.
, 2008, “
An Investigation on the Conduction and Convection Heat Transfer from Advanced Heat Sinks
,”
Proceedings of the 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, pp.
367
373
.
9.
Egelkraut
,
S.
,
Heinle
,
C.
,
Eckardt
,
B.
,
Kramer
,
P.
,
Brocka
,
Z.
,
Marz
,
M.
,
Ryssel
,
H.
, and
Ehrenstein
,
G. W.
, 2008, “
Highly Filled Polymers for Power Passives Packaging
,”
Proceedings of the Second Electronics System Integration Technology Conference
, London, UK, pp.
403
410
.
10.
Alawadhi
,
E. M.
, and
Amon
,
C. H.
, 2003, “
PCM Thermal Control Unit for Portable Electronic Devices: Experimental and Numerical Studies
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
1
), pp.
116
125
.
11.
Egan
,
E.
, and
Amon
,
C. H.
, 2001, “
Measuring Thermal Conductivity Enhancement of Polymer Composites: Application to Embedded Electronics Thermal Design
,”
J. Enhanced Heat Transfer
1065-5131,
8
(
2
), pp.
119
135
.
12.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Ibele
,
W. E.
,
Patankar
,
S. V.
,
Simon
,
T. W.
,
Kuehn
,
T. H.
,
Strykowski
,
P. J.
,
Tamma
,
K. K.
,
Heberlein
,
J. V. R.
,
Davidson
,
J. H.
,
Bischof
,
J.
,
Kulacki
,
F. A.
,
Kortshagen
,
U.
, and
Garrick
,
S.
, 2003, “
Heat Transfer—A Review of 2001 Literature
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
11
), pp.
1887
1992
.
13.
Shoemaker
,
J.
, 2005,
Moldflow Design Guide: A Resource for Plastics Engineers
,
Hanser
,
Munich, Germany
.
14.
Jeffery
,
G. B.
, 1922, “
The Motion of Ellipsoidal Particles Immersed in Viscous Fluid
,”
Proc. R. Soc. London, Ser. A
0950-1207,
102
(
715
), pp.
161
179
.
15.
Folgar
,
F. P.
, and
Tucker
,
C. L.
, 1984, “
Orientation Behavior of Fibers in Concentrated Suspensions
,”
J. Reinf. Plast. Compos.
0731-6844,
3
(
2
), pp.
98
119
.
16.
Bruck
,
H. A.
, 2000, “
A One-Dimensional Model for Designing Functionally Graded Materials to Attenuate Stress Waves
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
6383
6395
.
17.
Rabin
,
B. H.
,
Williamson
,
R. L.
,
Bruck
,
H. A.
,
Wang
,
X. -L.
,
Watkins
,
T. R.
, and
Clarke
,
D. R.
, 1998, “
Residual Strains in an Al2O3–Ni Joint Bonded With a Composite Interlayer: Experimental Measurements and FEM Analysis
,”
J. Am. Ceram. Soc.
0002-7820,
81
, pp.
1541
1549
.
18.
Shabana
,
Y. M.
,
Pines
,
M. L.
, and
Bruck
,
H. A.
, 2006, “
Modeling the Evolution of Stress Due to Differential Shrinkage in Powder-Processed Functionally Graded Metal-Ceramic Composites During Pressureless Sintering
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
7852
7868
.
19.
Paul
,
B.
, 1960, “
Prediction of Elastic Constants of Multiphase Materials
,”
Trans. Metall. Soc. AIME
0543-5722,
218
, pp.
36
41
.
You do not currently have access to this content.