Abstract

An important element of successful engineering design is the effective management of resources to support design decisions. Design decisions can be thought of as having two phases—a formulation phase and a solution phase. As part of the formulation phase, engineers must decide what information to collect and use to support the design decision. Since information comes at a cost, a cost-benefit tradeoff must be made. Previous work has considered such tradeoffs in cases in which all relevant probability distributions were precisely known. However, engineers frequently must characterize these distributions by gathering sample data during the information collection phase of the decision process. This characterization is crucial in high-risk design problems where uncommon events with severe consequences play a significant role in decisions. In this paper, we introduce the principles of information economics to guide decisions on information collection. We investigate how designers can bound the value of information in the case of distributions with unknown parameters by using imprecise probabilities to characterize the current state of information. We explore the basic performance, subtleties, and limitations of the approach in the context of characterizing the strength of a novel material for the design of a pressure vessel.

References

1.
Pahl
,
G.
, and
Beitz
,
W.
, 1996,
Engineering Design: A Systematic Approach
,
Springer
,
London
.
2.
Hazelrigg
,
G. A.
, 1996,
Systems Engineering: An Approach to Information-Based Design
,
Prentice Hall
,
Englewood Cliffs, NJ
.
3.
Thurston
,
D. L.
, 1990, “
Subjective Design Evaluation With Multiple Attributes
,” presented at the
2nd International Conference on Design Theory and Methodology
, Sep. 16–19,
ASME
,
New York
, Vol.
27
, pp.
355
361
.
4.
Marston
,
M.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 2000, “
The Decision Support Problem Technique: Integrating Descriptive and Normative Approaches in Decision Based Design
,”
J. Eng. Valuation Cost Anal.
1024-9559,
3
, pp.
107
129
.
5.
Kmietowicz
,
Z. W.
, and
Pearman
,
A. D.
, 1981,
Decision Theory and Incomplete Knowledge
,
Gower
,
Aldershot, England
.
6.
Marschak
,
J.
, 1974,
Economic Information, Decision, and Prediction: Selected Essays
,
D. Reidel
,
Boston
.
7.
Gupta
,
S. K.
, and
Xu
,
C.
, 2002, “
Estimating the Optimal Number of Alternatives to be Explored in Large Design Spaces: A Step Towards Incorporating Decision Making Cost in Design Decision Models
,”
ASME DETC Computers and Information in Engineering Conference
, Montreal, Canada, Report No. DETC2002∕CIE-34491.
8.
Radhakrishnan
,
R.
, and
McAdams
,
D. A.
, 2005, “
A Methodology for Model Selection in Engineering Design
,”
J. Math. Biol.
0303-6812,
127
, pp.
378
387
.
9.
Bradley
,
S. R.
, and
Agogino
,
A. M.
, 1994, “
An Intelligent Real Time Design Methodology for Component Selection: An Approach to Managing Uncertainty
,”
J. Math. Biol.
0303-6812,
116
, pp.
980
988
.
10.
Law
,
A. M.
, and
Kelton
,
D. W.
, 2000,
Simulation Modeling and Analysis
,
McGraw-Hill
,
St. Louis
.
11.
Cost-Benefit Analysis
, 2nd ed., 1994,
R.
Layard
and
S.
Glaister
, eds.,
Cambridge University Press
,
Cambridge
.
12.
Lawrence
,
D. B.
, 1999,
The Economic Value of Information
,
Springer-Verlag
,
New York
.
13.
Howard
,
R. A.
, 1965, “
Bayesian Decision Models for Systems Engineering
,”
IEEE Trans. Syst. Sci. Cybern.
0536-1567,
SSC-1
(
1
), pp.
36
40
.
14.
Howard
,
R. A.
, 1966, “
Information Value Theory
,”
IEEE Trans. Syst. Sci. Cybern.
0536-1567,
SCC-2
(
1
), pp.
22
26
.
15.
Matheson
,
J. E.
, 1968, “
The Economic Value of Analysis and Computation
,”
IEEE Trans. Syst. Sci. Cybern.
0536-1567,
SSC-4
(
3
), pp.
325
332
.
16.
Walley
,
P.
, 1991,
Statistical Reasoning With Imprecise Probabilities
,
Chapman and Hall
,
New York
.
17.
Lieberman
,
M.
, and
Hall
,
R.
, 2000,
Introduction to Economics
,
South-Western College Publishing
,
Cincinnati
.
18.
Rubin
,
M. R.
, 1983,
Information Economics and Policy in the U.S.
,
Libraries Unltd.
,
Littleton, CO
.
19.
Strassmann
,
P. A.
, 1999,
Information Productivity
,
Information Economics Press
,
New Canaan
.
20.
Strassmann
,
P. A.
, 2004, “
The Foundations of Information Economics—Part I
,”
Information Economics Journal
, March, pp.
15
18
.
21.
Jayaram
,
S.
,
Vance
,
J.
,
Gadh
,
R.
,
Jayaraman
,
J.
, and
Srinivasan
,
H.
, 2001, “
Assessment of Vr Technology and its Applications to Engineering Problems
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
1
(
1
), pp.
72
83
.
22.
Ciocoiu
,
M.
,
Gruninger
,
M.
, and
Nau
,
D.
, 2001, “
Ontologies for Integrating Engineering Applications
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
1
(
1
), pp.
12
22
.
23.
Urban
,
S. D.
,
Dietrich
,
S. W.
,
Saxena
,
A.
, and
Sundermier
,
A.
, 2001, “
Interconnection of Distributed Components: Current Middleware Solutions
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
1
(
1
), pp.
23
31
.
24.
Rangan
,
R. M.
, and
Chadha
,
B.
, 2001, “
Engineering Information Management to Support Enterprise Business Processes
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
1
(
1
), pp.
32
40
.
25.
Szykman
,
S.
,
Sriram
,
R.
, and
Regli
,
W. C.
, 2001, “
The Role of Knowledge in Next-Generation Product Development Systems
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
1
(
1
), pp.
3
11
.
26.
Aughenbaugh
,
J. M.
, and
Paredis
,
C. J. J.
, 2005, “
The Value of Using Imprecise Probabilities in Engineering Design
,”
ASME DETC Design Theory and Methodology
, Long Beach, CA, Report No. DETC2005–85354.
27.
de Finetti
,
B.
, 1937, “
La Prevision: Ses Lois Logiques, Ses Sources Subjectives
,”
Ann. Inst. Henri Poincare
0365-320X,
7
, pp.
1
68
;
de Finetti
,
B.
, English translation 1964, “
Foresight. Its Logical Laws, Its Subjective Sources
,”
Studies in Subjective Probability
,
H. E.
Kyburg
and
H. E.
Smokler
, eds.,
Wiley
,
New York
.
28.
Joslyn
,
C. A.
, and
Booker
,
J. M.
, 2005, “
Generalized Information Theory for Engineering Modeling and Simulation
,”
Engineering Design Reliability Handbook
,
E.
Nikolaidis
,
D. M.
Ghiocel
, and
S.
Singhal
, eds.,
CRC
,
New York
, pp.
9.1
9.40
.
29.
Savage
,
L. J.
, 1972,
The Foundation of Statistics
,
Dover
,
New York
.
30.
Winkler
,
R. L.
, 1996, “
Uncertainty in Probabilistic Risk Assessment
,”
Reliab. Eng. Syst. Saf.
0951-8320,
54
(
2–3
), pp.
127
132
.
31.
Sarin
,
R. K.
, 1978, “
Elicitation of Subjective Probabilities in the Context of Decision-Making
,”
Decision Sci.
0011-7315,
9
, pp.
37
48
.
32.
Weber
,
M.
, 1987, “
Decision Making With Incomplete Information
,”
Eur. J. Oper. Res.
0377-2217,
28
, pp.
44
57
.
33.
Kmietowicz
,
Z.
, and
Pearman
,
A.
, 1984, “
Decision Theory, Linear Partial Information and Statistical Dominance
,”
International Journal of Management Science
,
12
(
4
), pp.
391
399
.
34.
de Finetti
,
B.
, 1974,
Theory of Probability: A Critical Introductory Treatment
,
Wiley
,
New York
.
35.
Ferson
,
S.
, and
Donald
,
S.
, 1998, “
Probability Bounds Analysis
,”
International Conference on Probabilistic Safety Assessment and Management (PSAM4)
,
Springer-Verlag
,
New York
, pp.
1203
1208
.
36.
Ferson
,
S.
, 2002, “
Ramas Risk Calc
,” 4.0 ed.,
Lewis Publishers
,
New York
.
37.
Berger
,
J. O.
, 1985,
Statistical Decision Theory and Bayesian Analysis
,
Springer
,
New York
.
38.
Schervish
,
M. J.
,
Seidenfeld
,
T.
,
Kadane
,
J. B.
, and
Levi
,
I.
, 2003, “
Extensions of Expected Utility Theory and Some Limitations of Pairwise Comparisons
,” in
ISIPTA
, Lugano, Switzerland.
39.
Arrow
,
K.
, and
Hurwicz
,
L.
, 1972, “
An Optimality Criterion for Decision-Making Under Ignorance
,”
Uncertainty and Expectations in Economics: Essays in Honour of G. L. S. Shackle
,
C.
Shackle
and
J.
Ford
, eds.,
Basil Blackwell
,
Oxford
, pp.
1
11
.
40.
Williamson
,
R. C.
, and
Downs
,
T.
, 1990, “
Probabilistic Arithmetic I: Numerical Methods for Calculating Convolutions and Dependency Bounds
,”
Int. J. Approx. Reason.
0888-613X,
4
, pp.
89
158
.
41.
Ferson
,
S.
, and
Ginzburg
,
L.
, 1996, “
Different Methods are Needed to Propagate Ignorance and Variability
,”
Eng. World
0951-8320,
54
(
2–3
), pp.
133
144
.
You do not currently have access to this content.