This paper proposes a methodology to estimate errors in computational models and to include them in reliability-based design optimization (RBDO). Various sources of uncertainties, errors, and approximations in model form selection and numerical solution are considered. The solution approximation error is quantified based on the model itself, using the Richardson extrapolation method. The model form error is quantified based on the comparison of model prediction with physical observations using an interpolated resampling approach. The error in reliability analysis is also quantified and included in the RBDO formulation. The proposed methods are illustrated through numerical examples.

1.
Oberkampf
,
W. L.
,
Trucano
,
T. G.
, and
Hirsch
,
C.
, 2002, “
Verification, Validation and Predictive Capability in Computational Engineering and Physics
,”
Proceedings of Foundations’02, Workshop on V&V
,
Johns Hopkins University
,
Baltimore, MD
, Oct. 22–23.
2.
Draper
,
D.
, 1995, “
Assessment and Propagation of Model Uncertainty
,”
Struct. Optim.
0934-4373,
57
(
1
), pp.
45
97
.
3.
Zhang
,
R.
, and
Mahadevan
,
S.
, 2000, “
Model Uncertainty and Bayesian Updating in Reliability-Based Inspection
,”
Struct. Safety
0167-4730,
22
(
2
), pp.
145
160
.
4.
Der Kiureghian
,
A.
, 2001, “
Analysis of Structural Reliability Under Model and Statistical Uncertainties: A Bayesian Approach
,”
Comput. Struct. Eng.
,
1
(
2
), pp.
81
87
.
5.
Mehta
,
U. B.
, 1996, “
Guide to Credible Computer Simulations of Fluid Flows
,” AIAA
J. Propul. Power
0748-4658,
12
(
5
), pp.
940
948
.
6.
Reid
,
J. D.
, 1998, “
Admissible Modeling Errors or Modeling Simplifications
,”
Finite Elem. Anal. Design
0168-874X,
29
(
1
), pp.
49
63
.
7.
Kurowski
,
P.
, and
Szabo
,
B.
, 1997, “
How to Find Errors in the Finite Element Models
,”
Mach. Des.
0024-9114,
69
(
18
), pp.
93
98
.
8.
Rebba
,
R.
,
Mahadevan
,
S.
, and
Huang
,
S.
, 2004, “
Validation and Error Estimation of Computational Models
,”
Proceedings of SAMO2004
,
Santa Fe, New Mexico
, March 8–11.
9.
Babuska
,
I.
, and
Rheinboldt
,
W. C.
, 1978, “
Aposteriori Error Estimates for the Finite Element Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
12
, pp.
1597
1615
.
10.
Demkowicz
,
L.
,
Oden
,
J. T.
, and
Strouboulis
,
T.
, 1984, “
Adaptive Finite Elements for Flow Problems With Moving Boundaries. Part I: Variational Principles and Aposteriori Error Estimates
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
46
, pp.
217
251
.
11.
Szabo
,
B. A.
, 1986, “
Mesh Design for the p-Version of the Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
55
, pp.
181
197
.
12.
Zienkiewicz
,
O. C.
, and
Zhu
,
J. Z.
, 1992, “
The Super-Convergent Patch Recovery and aposteriori Estimates. Part 2: Error Estimates and Adaptivity
,”
Int. J. Numer. Methods Eng.
0029-5981,
33
, pp.
1335
1382
.
13.
Richards
,
S. A.
, 1997, “
Completed Richardson Extrapolation in Space and Time
,”
Commun. Numer. Methods Eng.
1069-8299,
13
, pp.
573
58
.
14.
Ditlevsen
,
O.
, and
Arnbjerg-Nielsen
,
T.
, 1994, “
Model Correction Factor Method in Structural Reliability
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
0044-7951,
120
(
1
), pp.
1
10
.
15.
Mahadevan
,
S.
, 2004, “
Design Optimization for Reliability and Robustness
,”
Proceedings of SAE World Congress 2004
,
Detroit
, March 8–11.
16.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
225
233
.
17.
Zou
,
T.
, 2004, “
Efficient Methods for Reliability-Based Design Optimization
,” Doctoral Dissertation, Department of Civil Engineering, Vanderbilt University, Nashville, TN.
18.
Royset
,
J. O.
,
Der Kiureghian
,
A.
, and
Polak
,
E.
, 2001, “
Reliability-Based Optimal Structural Design by the Decoupling Approach
,”
Reliab. Eng. Syst. Saf.
0951-8320,
73
, pp.
213
221
.
19.
Faber
,
M.
, and
Sørensen
,
J. D.
, 2003, “
Reliability-Based Code Calibration-The JCSS Approach
,”
Proceedings of the 9th International Conference on Applications of Statistics and Probability in Civil Engineering ICASP9
, July 6–9,
San Francisco
,
2
, pp.
927
935
.
20.
Smith
,
N. L.
, and
Mahadevan
,
S.
, 2005, “
Integrating System-Level and Component-Level Designs Under Uncertainty
,”
J. Spacecr. Rockets
0022-4650,
42
(
4
), pp.
752
760
.
21.
Acar
,
E.
,
Haftka
,
R. T.
,
Sankar
,
B. V.
, and
Qu
,
X.
, 2005, “
Increasing Design Load and Reducing Weight of Structures by Error Reduction
,” AIAA Paper No. 2005–2167,
46th AIAA∕ASME∕ASCE∕AHS∕ASC Structures, Structural Dynamics, and Materials Conference
, April 18–21,
Austin, TX
.
22.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design
,”
ASME J. Mech. Des.
1050-0472,
118
(
4
), pp.
478
485
.
23.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2004, “
An Integrated Framework for Optimization Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
562
570
.
24.
Agarwal
,
H.
,
Renaud
,
J. E.
,
Preston
,
E. L.
, and
Padmanabhan
,
D.
, 2004, “
Uncertainty Quantification Using Evidence Theory in Multidisciplinary Design Optimization
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
(
1–3
), pp.
281
294
.
25.
Mourelatos
,
Z.
, and
Zhou
,
J.
, 2004, “
Reliability Estimation and Design With Insufficient Data Based on Possibility Theory
,”
Proceedings of 10th AIAA∕ISSMO Multidisciplinary Analysis and Optimization Conference
,
Albany, NY
, Paper No. AIAA—2004—4586.
26.
Coleman
,
H. W.
, and
Stern
,
F.
, 1997, “
Uncertainties in CFD Code Validation
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
795
803
.
27.
Roache
,
P. J.
, 1998,
Verification and Validation in Computational Science and Engineering
,
Hermosa
,
Albuquerque, NM
.
28.
Barford
,
N. C.
, 1985,
Experimental Measurements: Precision, Error, and Truth
,
Wiley, New York
.
29.
Bayarri
,
M. J.
,
Berger
,
J. O.
,
Higdon
,
D.
,
Kennedy
,
M. C.
,
,
Kottas
,
A.
,
Paulo
,
R.
,
Sacks
,
J.
,
Cafeo
,
J. A.
,
Cavendish
,
J.
,
Lin
,
C. H.
, and
Tu
,
J.
, 2003, “
A Framework for Validation of Computer Models
,”
SIAM Conference on Mathematics for Industry: Challenges and Frontiers
, October 13–15,
Toronto, Canada
.
30.
Efron
,
B.
, and
Tibshirani
,
R. J.
, 1993,
An Introduction to the Bootstrap Method: Monographs on Statistics and Applied Probability 57
,
Chapman and Hall
,
London
.
31.
Silverman
,
B. W.
, and
Young
,
G. A.
, 1987, “
The Bootstraps: To Smooth or Not to Smooth
,”
Biometrika
0006-3444,
74
, pp.
469
479
.
32.
Jensen
,
J. L.
, 1995,
Saddlepoint Approximations
,
Oxford
,
New York
.
33.
Tapia
,
R. A.
, 1978,
Nonparametric Probability Density Estimation
,
Johns Hopkins University Press
,
Baltimore
.
34.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
35.
Mahadevan
,
S.
, and
Raghothamachar
,
P.
, 2000, “
Adaptive Simulation for System Reliability Analysis of Large Structures
,”
Comput. Struct.
0045-7949,
77
(
6
), pp.
725
734
.
36.
Cruse
,
T. A.
, 1997,
Reliability-Based Mechanical Design
,
Dekker, Inc
New York
.
37.
Shigley
,
J. E.
,
Mischke
,
C. R.
, and
Budynas
,
R. G.
, 2004, 7th ed.
Mechanical Engineering Design
,
McGraw-Hill
,
New York
.
38.
Tatang
,
M. A.
,
Pan
,
W. W.
,
Prinn
,
R. G.
, and
McRae
,
G. J.
, 1997, “
An Efficient Method for Parametric Uncertainty Analysis of Numerical Geophysical Model
,”
J. Geophys. Res., [Atmos.]
0148-0227,
102
(
D18
), pp.
21925
21932
.
39.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1991,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
40.
Graybill
,
F. A.
, and
Iyer
,
H. K.
, 1994,
Regression Analysis: Concepts and Application
,
Duxbury
,
Belmont, CA
.
You do not currently have access to this content.