Limaçon-to-limaçon compression-expansion machines have housings and rotors whose profiles are manufactured of limaçon curves. For these machines to perform satisfactorily, extreme care should be given to the geometric particulars of their rotor profile. The main characteristics that govern the quality of the rotor profile are the volumetric efficiency and the prevention of interference. In this work, the interference problem is handled from two different mathematical standpoints: the slope of tangents to both the rotor and housing curves at the apices; and the value of the minimum radial clearance that separates the two limaçon curves. In the first case, mathematical expressions, relating the radii of the limaçon base circles is presented to ensure that interference would not take place during normal operations of the limaçon-to-limaçon machine. The second mode of analysis produces a set of nonlinear equations that can be solved to obtain a value of the radial clearance. This value has to be machined off the rotor profile to prevent interference. A numerical example is given at the end of the paper to prove the validity of the models proposed and graphs are produced to support the claims presented.

1.
Fong
,
Z. H.
,
Huang
,
F. C.
, and
Fang
,
H. S.
, 2001, “
Evaluating the Inter-lobe Clearance of Twin-screw Compressor by the Iso-clearance Contour Diagram (ICCD)
,”
Mech. Mach. Theory
0094-114X,
36
, pp.
725
742
.
2.
Tong
,
S-H.
, and
Yang
,
D. C. H.
, 2005, “
Rotor Profiles Synthesis for Lobe Pumps With Given Flow Rate Functions
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
287
294
.
3.
Mimmi
,
G.
, and
Pennacchi
,
P.
, 1999, “
Analytical Model of a Particular Type of Positive Displacement Blower
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
0263-7154,
213
, pp.
517
526
.
4.
Peng
,
X.
,
Xing
,
Z.
,
Li
,
L.
, and
Shu
,
P.
, 2002, “
Thermodynamic Analysis of the Rotary Tooth Compressor
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
216
, pp.
321
327
.
5.
Stosic
,
N.
,
Smith
,
I. K.
, and
Kovacevic
,
A.
, 2003, “
Rotor Interference as a Criterion for Screw Compressor Design
,”
Mach. Learn.
0885-6125,
14
, pp.
209
220
.
6.
Guo
,
C.
, and
Tang
,
Y.
, 2003, “
Influence of Rotor Parameters on Screw Rotor Profiles
,”
Mach. Sci. Technol.
1091-0344,
7
, pp.
105
118
.
7.
Sawicki
,
J. T.
,
Montilla-Bravo
,
A.
, and
Gosiewski
,
Z.
, 2003, “
Thermomechanical Behaviour of Rotor with Rubbing
,”
Int. J. Rotating Mach.
1023-621X,
9
, pp.
41
47
.
8.
Lu
,
Q. S.
,
Zhang
,
S. J.
, and
Jin
,
L.
, 2004, “
Chaos Control by Delayed Impulsive Feedback in Rotor Systems with Grazing Rub-impact
,”
Dynam. Cont. Dis. Ser. B
,
11a
, pp.
171
177
.
9.
Edwards
,
S.
,
Lees
,
A. W.
, and
Friswell
,
M. I.
, 1999, “
The Influence of Torsion on Rotor/Stator Contact in Rotating Machinery
,”
J. Sound Vib.
0022-460X,
225
, pp.
767
778
.
10.
Wheildon
,
W. M.
, 1896, “Rotary Engine,” U.S. Patent No. 553086.
11.
Campo
,
M.
, 1919, “Rotary Engine,” U.S. Patent No. 1310157, July 1919.
12.
Feyens
,
F.
, 1927, “Rotary Compressor,” U.S. Patent No. 1802887.
13.
Planche
,
B. R.
, 1920, “Rotary Machine,” U.S. Patent No. 1340625.
14.
Planche
,
B. R.
, 1927, “Rotary Engine or Pump,” U.S. Patent No. 1636486.
15.
Frager
,
M.
, and
Menard
,
H.
, 1962, “Rotary Volumetric Apparatus,” U.S. Patent No. 3029741.
16.
Georgiev
,
G. D.
, 1981, “Rotary Machine with Lenticular Rotor and Circular Guide Member Therefore,” U.S. Patent No. 4300874.
17.
Sultan
,
I. A.
, 2005, “
The Limaçon of Pascal: Mechanical Generation and Utilization for Fluid Processing
,” Proc. IMechE Vol.
219
(
8
) Part C: J. Mechanical Engineering Science.
18.
Artobolevsky
,
I. I.
, 1964,
Mechanisms for the Generation of Plane Curves
,
Pergamon
, New York.
19.
Costa
,
S. I. R.
,
Grou
,
M. A.
, and
Figueiredo
,
V.
, 1999, “
Mechanical Curves - A Kinematic Greek Look Through the Computer
,”
Int. J. Math. Educ. Sci. Tech.
,
30
, pp.
459
468
.
You do not currently have access to this content.