Polymers can demonstrate shape memory (SM) effects by being temporarily fixed in a nonequilibrium shape and then recover their permanent shape when exposed to heat, light, or other external stimuli. Many previously developed shape memory polymers (SMPs) use the dramatic molecular chain mobility change around the glass transition temperature Tg to realize the SM effect. In these materials, the temporary shape cannot be repeated unless it is reprogramed, and therefore the SM effect is one way. Recently, a semicrystalline SMP, which can demonstrate both one- and two-way SM effects, was developed by one of our groups (Chung, T., Rorno-Uribe, A., and Mather, P. T., 2008, “Two-Way Reversible Shape Memory in a Semicrystalline Network,” Macromolecules, 41(1), pp. 184–192). The main mechanism of the observed SM effects is due to stretch induced crystallization. This paper develops a one-dimensional constitutive model to describe the SM effect due to stretch induced crystallization. The model accurately describes the complex thermomechanical SM effect and can be used for the future development of three-dimensional constitutive models.

1.
Lendlein
,
A.
, and
Kelch
,
S.
, 2002, “
Shape-Memory Polymers
,”
Angew. Chem., Int. Ed.
1433-7851,
41
(
12
), pp.
2034
2057
.
2.
Qi
,
H. J.
,
Nguyen
,
T. D.
,
Castro
,
F.
,
Yakacki
,
C.
, and
Shandas
,
R.
, 2008, “
Finite Deformation Thermo-Mechanical Behavior of Thermally Induced Shape Memory Polymers
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
1730
1751
.
3.
Nguyen
,
T. D.
,
Qi
,
H. J.
,
Castro
,
F.
, and
Long
,
K. N.
, 2008, “
A Thermoviscoelastic Model for Amorphous Shape Memory Polymers: Incorporating Structural and Stress Relaxation
,”
J. Mech. Phys. Solids
0022-5096,
56
(
9
), pp.
2792
2814
.
4.
Liu
,
C. D.
,
Chun
,
S. B.
,
Mather
,
P. T.
,
Zheng
,
L.
,
Haley
,
E. H.
, and
Coughlin
,
E. B.
, 2002, “
Chemically Cross-Linked Polycyclooctene: Synthesis, Characterization, And Shape Memory Behavior
,”
Macromolecules
0024-9297,
35
(
27
), pp.
9868
9874
.
5.
Chung
,
T.
,
Rorno-Uribe
,
A.
, and
Mather
,
P. T.
, 2008, “
Two-Way Reversible Shape Memory in a Semicrystalline Network
,”
Macromolecules
0024-9297,
41
(
1
), pp.
184
192
.
6.
Liu
,
Y. P.
,
Gall
,
K.
,
Dunn
,
M. L.
,
Greenberg
,
A. R.
, and
Diani
,
J.
, 2006, “
Thermomechanics of Shape Memory Polymers: Uniaxial Experiments and Constitutive Modeling
,”
Int. J. Plast.
0749-6419,
22
(
2
), pp.
279
313
.
7.
Chen
,
Y. C.
, and
Lagoudas
,
D. C.
, 2008, “
A Constitutive Theory for Shape Memory Polymers. Part I: Large Deformations
,”
J. Mech. Phys. Solids
0022-5096,
56
(
5
), pp.
1752
1765
.
8.
Chen
,
Y. C.
, and
Lagoudas
,
D. C.
, 2008, “
A Constitutive Theory for Shape Memory Polymers. Part II: A Linearized Model for Small Deformations
,”
J. Mech. Phys. Solids
0022-5096,
56
(
5
), pp.
1766
1778
.
9.
Barot
,
G.
, and
Rao
,
I. J.
, 2006, “
Constitutive Modeling of the Mechanics Associated With Crystallizable Shape Memory Polymers
,”
ZAMP
0044-2275,
57
(
4
), pp.
652
681
.
10.
Barot
,
G.
,
Rao
,
I. J.
, and
Rajagopal
,
K. R.
, 2008, “
A Thermodynamic Framework for the Modeling of Crystallizable Shape Memory Polymers
,”
Int. J. Eng. Sci.
0020-7225,
46
(
4
), pp.
325
351
.
11.
Long
,
K. N.
,
Scott
,
T. F.
,
Qi
,
H. J.
,
Bowman
,
C. N.
, and
Dunn
,
M. L.
, 2009, “
Photomechanics of Light-Activated Polymers
,”
J. Mech. Phys. Solids
0022-5096,
57
(
7
), pp.
1103
1121
.
12.
Long
,
K. N.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
, 2010, “
Mechanics of Soft Active Materials With Evolving Phases
,”
Int. J. Plast.
0749-6419,
26
(
4
), pp.
603
-
616
.
13.
Avrami
,
M.
, 1939, “
Kinetics of Phase Change. I General Theory
,”
J. Chem. Phys.
0021-9606,
7
(
12
), pp.
1103
1112
.
14.
Avrami
,
M.
, 1941, “
Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III
,”
J. Chem. Phys.
0021-9606,
9
(
2
), pp.
177
184
.
15.
Gent
,
A. N.
, 1954, “
Crystallization and the Relaxation of Stress in Stretched Natural Rubber Vulcanizates
,”
Trans. Faraday Soc.
0014-7672,
50
(
5
), pp.
521
533
.
16.
Luch
,
D.
, and
Yeh
,
G. S. Y.
, 1973, “
Strain-Induced Crystallization of Natural-Rubber.3. Re-Examination of Axial-Stress Changes During Oriented Crystallization of Natural-Rubber Vulcanizates
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
11
(
3
), pp.
467
486
.
You do not currently have access to this content.