Simkin et al. (2003, “A Factor to Predict Microcrack Nucleation at Gamma-Gamma Grain Boundaries in TiAl,” Scr. Mater., 49(2), 149–154) proposed a relationship for predicting crack initiation in γ-TiAl in a scenario where a mechanical twin interacts with a grain boundary. This correlation (quantified using a fracture initiation parameter or fip) was based only on the geometry of the Burgers vectors as they are related to slip transfer across the grain boundary and the Mode I type opening force experienced by the grain boundary. Generally, a fip is a mathematical combination of factors that allow weak boundaries to be probabilistically identified in the context of a state of stress. This paper further develops this approach by considering the inclusion of the mismatch between the slip planes in the grain boundary and a parameter that accounts for the different elastic properties in adjoining grains. Also, the significance of primary twin (slip) systems versus secondary slip systems is assessed. When compared to fips that can be constructed through a variety of other combinations of nine geometrical parameters that could affect grain boundary damage nucleation, the fip obtained by multiplying Simkin’s original parameter by EminEmax, the ratio of Young’s modulus in the stress direction in the two grains, is best able to distinguish between cracked and intact grain boundary populations. Cracked and intact boundaries are also characterized to assess tilt and twist character and whether they are low Σ (or coincident site lattice) boundaries (using a cubic criterion). It is also shown that fips based on Σ values or the tilt and twist character of the boundary lead to an unacceptably high probability of incorrectly distinguishing between cracked and intact grain boundaries, implying that these are not critical parameters affecting crack nucleation at the grain boundary in duplex near-γ TiAl. The paper closes with a discussion on how combined microscopic and crystal plasticity finite element analyses provide insights on local stress-strain relationships that can be used to evaluate a fip in the context of heterogeneous deformation in multigrain ensembles.

1.
Dimiduk
,
D. M.
, 1995, “
Gamma Titanium Aluminides-An Emerging Materials Technology
,”
Gamma Titanium Aluminides
,
Y. W.
Kim
,
R.
Wager
, and
M.
Yamaguchi
, eds.,
The Minerals, Metals and Materials Society
,
Warrendale, PA
, pp.
3
20
.
2.
Kim
,
Y.-W.
, 1989, “
Intermetallics Alloys Based on Gamma Titanium Aluminide
,”
JOM
1047-4838,
41
(
7
), pp.
24
30
.
3.
Yamagchi
,
M.
, and
Umakoshi
,
Y.
, 1990, “
The Deformation-Behavior of Intermetallic Superlattice Compounds
,”
Prog. Mater. Sci.
0079-6425,
34
, pp.
85
136
.
4.
Jin
,
Z.
, and
Gray
III,
G. T.
, 1998, “
On Deformation Twins and Twin-Related Lamellae in TiAl
,”
J. Mater. Sci.
0022-2461,
33
, pp.
77
83
.
5.
Biery
,
N.
,
De Graef
,
M.
, and
Pollock
,
T. M.
, 1999, in
Gamma Titanium Aluminides
,
Y. M.
Kim
,
D. M.
Dimiduk
, and
M. H.
Loretto
, eds.,
Minerals Metals and Materials Society
,
Warrendale, PA
, pp.
557
564
.
6.
Mahapatra
,
R.
,
Girshick
,
A.
,
Pope
,
D. P.
, and
Vitek
,
V.
, 1995, “
Deformation Mechanisms of Near-Stoichiometric Single-Phase TiAl Single-Crystals and a Combined Experimental and Atomistic Modeling Study
,”
Scr. Metall. Mater.
0956-716X,
33
(
12
), pp.
1921
1927
.
7.
Kim
,
Y. W.
, 1992, “
Microstructural Evolution and Mechanical-Properties of a Forged Gamma-Titanium Aluminide Alloy
,”
Acta Metall. Mater.
0956-7151,
40
, pp.
1121
34
.
8.
Sastry
,
S. M. L.
, and
Lipsitt
,
H. A.
, 1977, “
Fatigue Deformation of TiAl Base Alloys
,”
Metall. Trans. A
0360-2133,
8A
, pp.
299
308
.
9.
Jin
,
Z.
, and
Bieler
,
T. R.
, 1995, “
An In Situ Observation of Mechanical Twinning Nucleation and Propagation in TiAl
,”
Philos. Mag. A
0141-8610,
70
, pp.
819
36
.
10.
Jin
,
Z.
, and
Bieler
,
T. R.
, 1995, “
A Numerical Force and Stress Analysis on a Thin Twin Layer in TiAl
,”
Philos. Mag. A
0141-8610,
72
, pp.
1201
19
.
11.
Seo
,
D. Y.
,
Bieler
,
T. R.
, and
Larsen
,
D. E.
, 1997, “
The Effect of Heat Treatments on Microstructures and Primary Creep Properties of Four Investment Cast Titanium Aluminides Alloys
,”
Structural Intermetallics 1997
,
TMS
,
Warrendale, PA
, pp.
137
46
.
12.
Simkin
,
B. A.
,
Crimp
,
M. A.
, and
Bieler
,
T. R.
, 2003, “
A Factor to Predict Microcrack Nucleation at Gamma-Gamma Grain Boundaries in TiAl
,”
Scr. Mater.
1359-6462,
49
(
2
), pp.
149
154
.
13.
Simkin
,
B. A.
, 2003, Ph.D., thesis Michigan State University, Michigan.
14.
Fallahi
,
A.
,
Mason
,
D. E.
,
Kumar
,
D.
,
Bieler
,
T. R.
, and
Crimp
,
M. A.
, 2006, “
The Effect of Grain Boundary Normal on Predicting Microcrack Nucleation Using Fracture Initiation Parameters in Duplex TiAl
,”
Mater. Sci. Eng., A
0921-5093,
432
(
1–2
), pp.
281
29
.
15.
Bieler
,
T. R.
,
Fallahi
,
A.
,
Ng
,
B. C.
,
Kumar
,
D.
,
Crimp
,
M. A.
,
Simkin
,
B. A.
,
Zamiri
,
A.
,
Pourboghrat
,
F.
, and
Mason
,
D. E.
, 2005, “
Fracture Initiation/Propagation Parameters for Duplex TiAl Grain Boundaries Based on Twinning, Slip, Crystal Orientation, and Boundary Misorientation
,”
Intermetallics
0966-9795,
13
(
9
), pp.
979
984
.
16.
Simkin
,
B. A.
,
Ng
,
B. C.
,
Crimp
,
M. A.
, and
Bieler
,
T. R.
, 2007, “
Crack Opening Due to Deformation Twin Shear at Grain Boundaries in Near-γ TiAl
,”
Intermetallics
0966-9795,
15
, pp.
55
60
.
17.
Simkin
,
B. A.
,
Crimp
,
M. A.
,
Bieler
,
T. R.
, and
Mason
,
D. E.
, 2003, “
Orientation Determination and Defect Analysis in the Near-Cubic Intermetallic Gamma-TiAl Using SACP, ECCI, and EBSD
,”
Intermetallics
0966-9795,
11
(
3
), pp.
215
23
.
18.
Fallahi
,
A.
,
Kumar
,
D.
,
Zamiri
,
A.
,
Bieler
,
T. R.
,
Crimp
,
M. A.
,
Pourboghrat
,
F.
, and
Mason
,
D. E.
, 2004, “
The Effect of Grain Boundary Misorientation, Inclination, Crystal Orientation, and Stress State on Microcrack Initiation in Duplex TiAl Grain Boundaries
,”
TMS Lett.
1550-2570,
1
(
5
), pp.
101
102
.
19.
Palumbo
,
G.
,
Lehockey
,
E. M.
, and
Lin
,
P.
, 1998, “
Applications for Grain Boundary Engineered Materials
,”
JOM
1047-4838,
50
, pp.
40
43
.
20.
Was
,
G. S.
,
Thaveeprungsriporn
,
V.
, and
Crawford
,
D. C.
, 1998, “
Grain Boundary Misorientation Effects on Creep and Cracking in Ni-Based Alloys
,”
JOM
1047-4838,
50
, pp.
44
49
.
21.
Watanabe
,
T.
, 1984, “
An Approach to Grain Boundary Design for Strong and Ductile Polycrystals
,”
Res. Mech.
0143-0084,
11
, pp.
47
84
.
22.
Zaefferer
,
S.
,
Kuo
,
J. C.
,
Zhao
,
Z.
,
Winning
,
M.
, and
Raabe
,
D.
, 2003, “
On the Influence of the Grain Boundary Misorientation on the Plastic Deformation of Aluminum Bicrystals
,”
Acta Mater.
1359-6454,
51
(
16
), pp.
4719
4735
.
23.
Bollmann
,
W.
, 1991, “
The Stress-Field of a Model Triple-Line Disclination
,”
Mater. Sci. Eng., A
0921-5093,
136
, pp.
1
7
.
24.
Randle
,
V.
, 1995, “
The Influence of Grain Junctions and Boundaries on Superplastic Deformation.
,”
Acta Metall. Mater.
0956-7151,
43
(
5
), pp.
1741
1749
.
25.
Lim
,
L. C.
, and
Raj
,
R.
, 1985, “
Continuity of Slip Screw and Mixed-Crystal Dislocations Across Bicrystals of Nickel at 573-K
,”
Acta Metall.
0001-6160,
33
, pp.
1577
1583
.
26.
Kobayashi
,
S.
,
Tsurekawa
,
S.
, and
Watanabe
,
T.
, 2005, “
Grain Boundary Hardening and Triple Junction Hardening in Polycrystalline Molybdenum
,”
Acta Mater.
1359-6454,
53
(
4
), pp.
1051
1057
.
27.
Gibson
,
M. A.
, and
Forwood
,
C. T.
, 2002, “
Slip Transfer of Deformation Twins in Duplex Gamma-Based Ti-Al Alloys. III. Transfer Across General Large-Angle Gamma-Gamma Grain Boundaries
,”
Philos. Mag. A
0141-8610,
82
, pp.
1381
1404
.
28.
Clark
,
W. A. T.
,
Wagoner
,
R. H.
,
Shen
,
Z. Y.
,
Lee
,
T. C.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
, 1992, “
On the Criteria for Slip Transmission Across Interfaces in Polycrystals
,”
Scr. Metall. Mater.
0956-716X,
26
, pp.
203
206
.
29.
de Koning
,
M.
,
Miller
,
R.
,
Bulatov
,
V. V.
, and
Abraham
,
F. F.
, 2002, “
Modeling Grain-Boundary Resistance in Intergranular Dislocation Slip Transmission
,”
Philos. Mag. A
0141-8610,
82
(
13
), pp.
2511
2527
.
30.
de Koning
,
M.
,
Kurtz
,
R. J.
,
Bulatov
,
V. V.
,
Henager
,
C. H.
,
Hoagland
,
R. G.
,
Cai
,
W.
, and
Nomura
,
M.
, 2003, “
Modeling of Dislocation-Grain Boundary Interactions in FCC Metals
,”
J. Nucl. Mater.
0022-3115,
323
(
2–3
), pp.
281
289
.
31.
Luster
,
J.
, and
Morris
,
M. A.
, 1995, “
Compatibility of Deformation in Two-Phase Ti-Al Alloys: Dependence on Microstructure and Orientation Relationships
,”
Metall. Mater. Trans. A
1073-5623,
26
, pp.
1745
1756
.
32.
Spearot
,
D. E.
,
Jacob
,
K. I.
, and
McDowell
,
D. L.
, 2007, “
Dislocation Nucleation From Bicrystal Interfaces With Dissociated Structure
,”
Int. J. Plast.
0749-6419,
23
(
1
), pp.
143
160
.
33.
Bieler
,
T. R.
,
Eisenlohr
,
P.
,
Roters
,
F.
,
Kumar
,
D.
,
Mason
,
D. E.
,
Crimp
,
M. A.
, and
Raabe
,
D.
, “
The Role of Heterogeneous Deformation on Damage Nucleation at Grain Boundaries in Single Phase Metals
,”
Int. J. Plast.
, in press.
34.
Ashmawi
,
W. M.
, and
Zikry
,
M. A.
, 2002, “
Prediction of Grain-Boundary Interfacial Mechanisms in Polycrystalline Materials
,”
ASME J. Eng. Mater. Technol.
0094-4289,
124
, pp.
88
96
.
35.
He
,
Y.
,
Schwarz
,
R. B.
,
Darling
,
T.
,
Hundley
,
M.
,
Whang
,
S. H.
, and
Wang
,
Z. M.
, 1997, “
Elastic Constants and Thermal Expansion of Single Crystal Gamma-TiAl From 300to750K
,”
Mater. Sci. Eng., A
0921-5093,
240
, pp.
157
163
.
36.
Gayen
,
A. K.
, 1950, “
The Distribution of the Variance Ratio in Random Samples of Any Size Drawn From Non-Normal Universes
,”
Biometrika
0006-3444,
37
, pp.
236
255
.
37.
Miller
,
R. G.
, 1998, “
Beyond ANOVA: Basics of Applied Statistics
,”
Texts in Statistical Science
,
Chapman and Hall
,
London
.
38.
Kocks
,
U. F.
,
Tomé
,
C. N.
, and
Wenk
,
H. R.
, 1998,
Texture and Anisotropy
,
Cambridge University Press
,
Cambridge
.
39.
Mykura
,
H.
, 1979,
Proceedings of 1979 ASM Materials Science Seminar
, Appendix A.
40.
TexSEM Laboratories, Draper, UT.
41.
McGarrity
,
E. S.
,
Duxbury
,
P. M.
, and
Holm
,
E. A.
, 2005, “
Statistical Physics of Grain-Boundary Engineering
,”
Phys. Rev. E
1063-651X,
71
(
2
), p.
026102
.
42.
Humphreys
,
F. J.
, and
Huang
,
Y.
, 1999, “
Measurements of Grain Boundary Mobility During Recrystallization of a Single-Phase Aluminium Alloy
,”
Acta Mater.
1359-6454,
47
, pp.
2259
2268
.
43.
Fuschillo
,
N.
,
Gimpl
,
M. L.
, and
Macmaster
,
A. D.
, 1966, “
Structure Growth and Properties of Twist and Tilt Grain Boundaries in Bicrystals of NaCl
,”
J. Appl. Phys.
0021-8979,
37
(
5
), pp.
2044
2051
.
44.
Qiao
,
Y.
, and
Kong
,
X.
, 2004, “
An Energy Analysis of the Grain Boundary Behavior in Cleavage Cracking in Fe-3wt.%Si Alloy
,”
Mater. Lett.
0167-577X,
58
, pp.
3156
3160
.
45.
Kalidindi
,
S. R.
,
Bronkhorst
,
C. A.
, and
Anand
,
L.
, 1992, “
Crystallographic Texture Evolution in Bulk Deformation Processing of FCC Metals
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
537
569
.
46.
Kalidindi
,
S. R.
, and
Anand
,
L.
, 1993, “
Large Deformation Simple Compression of a Copper Single Crystal
,”
Metall. Trans. A
0360-2133,
24
, pp.
989
992
.
47.
Bhattacharyya
,
A.
,
El-Danaf
,
E.
,
Kalidindi
,
S. R.
, and
Doherty
,
R. D.
, 2001, “
Evolution of Grain-Scale Microstructure During Large Strain Simple Compression of Polycrystalline Aluminum With Quasi-Columnar Grains: OIM Measurements and Numerical Simulations
,”
Int. J. Plast.
0749-6419,
17
(
6
), pp.
861
883
.
48.
Raabe
,
D.
,
Sachtleber
,
M.
,
Zhao
,
Z.
,
Roters
,
F.
, and
Zaefferer
,
S.
, 2001, “
Micromechanical and Macromechanical Effects in Grain Scale Polycrystal Plasticity Experimentation and Simulation
,”
Acta Mater.
1359-6454,
49
, pp.
3433
3441
.
49.
Sachtleber
,
M.
,
Zhao
,
Z.
, and
Raabe
,
D.
, 2002, “
Experimental Investigation of Plastic Grain Interaction
,”
Mater. Sci. Eng., A
0921-5093,
336
, pp.
81
87
.
50.
Knaul
,
D. A.
,
Beuth
,
J. L.
, and
Milke
,
J. G.
, 1999, “
Modeling and Measurement of the Notched Strength of Gamma Titanium Aluminides Under Monotonic Loading
,”
Metall. Mater. Trans. A
1073-5623,
30
(
4
), pp.
949
959
.
You do not currently have access to this content.