To estimate the electric fracture toughness, indentation fracture (IF) tests were made on piezoelectric materials under combined mechanical and electrical loads. Lead zirconate titanate (PZT) ceramics from a commercial source were used. A three-dimensional finite element analysis was also employed to calculate the energy release rate and stress intensity factor. Surface cracks produced by indentation with Vickers indented were modeled as two point-force loaded half-penny-shaped cracks.
1.
Tani
, J.
, Takagi
, T.
, and Qiu
, J.
, 1998
, “Intelligent Material Systems: Application of Functional Materials
,” Appl. Mech. Rev.
, 51
, pp. 505
–521
.2.
Zhou
, S.
, Liang
, C.
, and Rogers
, C. A.
, 1997
, “Integration and Design of Piezoceramic Elements in Intelligent Structures
,” J. Intell. Mater. Syst. Struct.
, 8
, pp. 363
–373
.3.
Kumar
, S.
, and Singh
, R. N.
, 1996
, “Crack Propagation in Piezoelectric Materials under Combined Mechanical and Electrical Loadings
,” Acta Mater.
, 44
, pp. 173
–200
.4.
Shindo
, Y.
, Watanabe
, K.
, and Narita
, F.
, 2000
, “Electroelastic Analysis of a Piezoelectric Ceramic Strip with a Central Crack
,” Int. J. Eng. Sci.
, 38
, pp. 1
–19
.5.
McHenry, K. D., and Koepke, B. G., 1983, “Electric Field Effects on Subcritical Crack Growth in PZT,” Fracture Mechanics of Ceramics, Vol. 5, Plenum Press, New York-London, pp. 337–352.
6.
Park
, S. B.
, and Sun
, C. T.
, 1995
, “Effect of Electric Field on Fracture of Piezoelectric Ceramics
,” Int. J. Fract.
, 70
, pp. 203
–216
.7.
Cao
, H.
, and Evans
, A. G.
, 1994
, “Electric-Field-Induced Fatigue Crack Growth in Piezoelectrics
,” J. Am. Ceram. Soc.
, 77
, pp. 1783
–1786
.8.
Pak
, Y. E.
, 1990
, “Crack Extension Force in a Piezoelectric Material
,” ASME J. Appl. Mech.
, 57
, pp. 647
–653
.9.
Shindo
, Y.
, Ozawa
, E.
, and Nowacki
, J. P.
, 1990
, “Singular Stress and Electric Fields of a Cracked Piezoelectric Strip
,” Int. J. Appl. Electromagn. Mech.
, 1
, pp. 77
–87
.10.
Shindo
, Y.
, Narita
, F.
, and Tanaka
, K.
, 1996
, “Electroelastic Intensification near Anti-Plane Shear Crack in Orthotropic Piezoelectric Ceramic Strip
,” Theor. Appl. Fract. Mech.
, 25
, pp. 65
–71
.11.
Shindo
, Y.
, Tanaka
, K.
, and Narita
, F.
, 1997
, “Singular Stress and Electric Fields of a Piezoelectric Ceramic Strip with a Finite Crack under Longitudinal Shear
,” Acta Mech.
, 120
, pp. 31
–45
.12.
McMeeking
, R. M.
, 1989
, “Electrostrictive Stresses near Crack-Like Flaws
,” Journal of Applied Mathematics and Physics (ZAMP)
, 40
, pp. 615
–627
.13.
Dunn
, M. L.
, 1994
, “The Effects of Crack Face Boundary Conditions on the Fracture Mechanics of Piezoelectric Solids
,” Eng. Fract. Mech.
, 48
, pp. 25
–39
.14.
Sosa
, H.
, and Khutoryansky
, N.
, 1996
, “New Developments Concerning Piezoelectric Materials with Defects
,” Int. J. Solids Struct.
, 33
, pp. 3399
–3414
.15.
Conzone
, S. D.
, Blumenthal
, W. R.
, and Varner
, J. R.
, 1995
, “Fracture Toughness of TiB2 and B4C using the Single-Edge Precracked Beam, Indentation Strength, Chevron Notched Beam, and Indentation Strength Methods
,” J. Am. Ceram. Soc.
, 78
, pp. 2187
–2192
.16.
Chen
, W.-Q.
, Shioya
, T.
, and Ding
, H.-J.
, 1999
, “The Elasto-Electric Field for a Rigid Conical Punch on a Transversely Isotropic Piezoelectric Half-Space
,” ASME J. Appl. Mech.
, 66
, pp. 764
–771
.17.
Giannakopoulos
, A. E.
, and Suresh
, S.
, 1999
, “Theory of Indentation of Piezoelectric Materials
,” Acta Mater.
, 47
, pp. 2153
–2164
.18.
Giannakopoulos
, A. E.
, 2000
, “Strength Analysis of Spherical Indentation of Piezoelectric Materials
,” ASME J. Appl. Mech.
, 67
, pp. 409
–416
.19.
Ramamurty
, U.
, Sridhar
, S.
, Giannakopoulos
, A. E.
, and Suresh
, S.
, 1999
, “An Experimental Study of Spherical Indentation on Piezoelectric Materials
,” Acta Mater.
, 47
, pp. 2417
–2430
.20.
Sridhar
, S.
, Giannakopoulos
, A. E.
, Suresh
, S.
, and Ramamurty
, U.
, 1999
, “Electrical Response During Indentation of Piezoelectric Materials: A New Method for Material Characterization
,” J. Appl. Phys.
, 85
, pp. 380
–387
.21.
Pak, Y. E., and Tobin, A., 1993, “On Electric Field Effects in Fracture of Piezoelectric Materials,” ASME Mechanics of Electromagnetic Materials and Structures, Lee, J. S., Maugin, G. A., and Shindo, Y., eds., AMD-Vol. 161, MD Vol. 42, pp. 51–62.
22.
Lynch
, C. S.
, 1998
, “Fracture of Ferroelectric and Relaxor Electro-Ceramics: Influence of Electric Field
,” Acta Mater.
, 46
, pp. 599
–608
.23.
Fu
, R.
, and Zhang
, T.-Y.
, 2000
, “Effect of an Electric Field on the Fracture Toughness of Poled Lead Zirconate Titanate Ceramics
,” J. Am. Ceram. Soc.
, 83
, pp. 1215
–1218
.24.
Lawn
, B. R.
, Evans
, A. G.
, and Marshall
, D. B.
, 1980
, “Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crac System
,” J. Am. Ceram. Soc.
, 63
, pp. 574
–581
.25.
Shindo
, Y.
, Narita
, F.
, and Ozawa
, E.
, 1999
, “Impact Response of Finite Crack in an Orthotropic Piezoelectric Ceramic
,” Acta Mech.
, 137
, pp. 99
–107
.26.
JIS R 1607, 1995, “Testing Methods for Fracture Toughness of Fine Ceramics,” Japanese Standards Association, Tokyo, Japan.
27.
Pisarenko
, G. G.
, Chushko
, V. M.
, and Kovalev
, S. P.
, 1985
, “Anisotropic of Fracture Toughness of Piezoelectric Ceramics
,” J. Am. Ceram. Soc.
, 68
, pp. 259
–265
.28.
Zhang
, Z.
, and Raj
, R.
, 1995
, “Influence of Grain Size on Ferroelastic Toughening and Piezoelectric Behavior of Lead Zirconate Titanate
,” J. Am. Ceram. Soc.
, 78
, pp. 3363
–3368
.29.
Shetty
, D. K.
, Rosenfield
, A. R.
, and Duckworth
, W.
, 1985
, “Analysis of Indentation Crack as a Wedge-Loaded Half-Penny Crack
,” J. Am. Ceram. Soc.
, 68
, pp. C-65-C-67
C-65-C-67
.30.
Marshall
, D. B.
, 1983
, “Controlled Flaws in Ceramics: A Comparison of Knoop and Vickers Indentation
,” J. Am. Ceram. Soc.
, 66
, pp. 127
–131
.Copyright © 2001
by ASME
You do not currently have access to this content.