A method is developed which allows the digital simulation of the unsteady motion of a single ball constrained only by two moving bearing races. Any desired motion of the races can be simulated. Normal forces acting on the ball are calculated by Hertzian contact deformation theory. If there is slippage between ball and races, Coulomb friction is assumed to occur. Solutions to the differential equations of motion were obtained on a computer with the digital simulation language MIMIC. The phenomenon of ball control as well as the behavior of the ball as it reached a controlled state from rest were observed. This analysis can produce more realistic results than methods that assume that the ball is controlled at all times, especially when the races are radially or angularly displaced with respect to each other.

This content is only available via PDF.
You do not currently have access to this content.