Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study used hyperspectral imaging to analyze localized near-field interactions between incident electromagnetic waves and silicon nanowire (SiNW) arrays manufactured through catalytic etching of Si wafers for different durations. The results revealed that the unetched upper surface area on Si wafers and reflection of incident light decreased with increasing etching time. A light reflection band peaking at approximately 880 nm was generated from arrays etched for more than 1 h. We used six separate hyperspectral images to analyze the wavelength-dependent spatial optical responses of the fabricated SiNW arrays. The images revealed hot spots of light reflection from unetched Si surfaces in the wavelength range of 470–750 nm and a resonant peak at 880 nm for a photonic crystal derived from a random SiNW array. Accordingly, hyperspectral imaging enables the assessment of localized optical responses of SiNW arrays, which can then be optimized to cater to various applications.

References

1.
Sahoo
,
M. K.
, and
Kale
,
P.
,
2019
, “
Integration of Silicon Nanowires in Solar Cell Structure for Efficiency Enhancement: A Review
,”
J. Materiomics
,
5
(
1
), pp.
34
48
.
2.
Lee
,
S. A.
,
Choi
,
S.
,
Kim
,
C.
,
Yang
,
J. W.
,
Kim
,
S. Y.
, and
Jang
,
H. W.
,
2020
, “
SI-Based Water Oxidation Photoanodes Conjugated With Earth-Abundant Transition Metal-Based Catalysts
,”
ACS Mater. Lett.
,
2
(
1
), pp.
107
126
.
3.
Jaldurgam
,
F. F.
,
Ahmad
,
Z.
, and
Touati
,
F.
,
2021
, “
Low-Toxic, Earth-Abundant Nanostructured Materials for Thermoelectric Applications
,”
Nanomaterials
,
11
(
4
), p.
895
.
4.
Liu
,
Y.
,
Li
,
Y.
,
Wu
,
Y.
,
Yang
,
G.
,
Mazzarella
,
L.
,
Procel-Moya
,
P.
,
Tamboli
,
A. C.
,
Weber
,
K.
,
Boccard
,
M.
,
Isabella
,
O.
,
Yang
,
X.
, and
Sun
,
B.
,
2020
, “
High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications
,”
Mater. Sci. Eng. R Rep.
,
142
, p.
100579
.
5.
Yu
,
P.
,
Wu
,
J.
,
Liu
,
S.
,
Xiong
,
J.
,
Jagadish
,
C.
, and
Wang
,
Z. M.
,
2016
, “
Design and Fabrication of Silicon Nanowires Towards Efficient Solar Cells
,”
Nano Today
,
11
(
6
), pp.
704
737
.
6.
Jariwala
,
P. H.
,
Sonavane
,
Y. A.
, and
Thakor
,
P. B.
,
2021
, “
Effect of Passivity on Ultrathin Si Nanowire: A Density Functional Approach
,”
Mater. Today: Proc.
,
47
(
2
), pp.
559
562
.
7.
Wendisch
,
F. J.
,
Rey
,
M.
,
Vogel
,
N.
, and
Bourret
,
G. R.
,
2020
, “
Large-Scale Synthesis of Highly Uniform Silicon Nanowire Arrays Using Metal-Assisted Chemical Etching
,”
Chem. Mat.
,
32
(
21
), pp.
9425
9434
.
8.
Ghosh
,
R.
, and
Giri
,
P. K.
,
2016
, “
Silicon Nanowire Heterostructures for Advanced Energy and Environmental Applications: A Review
,”
Nanotechnology
,
28
(
1
), p.
012001
.
9.
Wendisch
,
F. J.
,
Abazari
,
M.
,
Mahdavi
,
H.
,
Rey
,
M.
,
Vogel
,
N.
,
Musso
,
M.
,
Diwald
,
O.
, and
Bourret
,
G. R.
,
2020
, “
Morphology-Graded Silicon Nanowire Arrays Via Chemical Etching: Engineering Optical Properties at the Nanoscale and Macroscale
,”
ACS Appl. Mater. Interfaces
,
12
(
11
), pp.
13140
13147
.
10.
Song
,
X.
,
Zhang
,
T.
,
Wu
,
L.
,
Hu
,
R.
,
Qian
,
W.
,
Liu
,
Z.
,
Wang
,
J.
,
Shi
,
Y.
,
Xu
,
J.
,
Chen
,
K.
, and
Yu
,
L.
,
2022
, “
Highly Stretchable High-Performance Silicon Nanowire Field Effect Transistors Integrated on Elastomer Substrates
,”
Adv. Sci.
,
9
(
9
), p.
2105623
.
11.
Namdari
,
P.
,
Daraee
,
H.
, and
Eatemadi
,
A.
,
2016
, “
Recent Advances in Silicon Nanowire Biosensors: Synthesis Methods, Properties, and Applications
,”
Nanoscale Res. Lett.
,
11
(
1
), p.
406
.
12.
Prakash
,
M. D.
,
Krsihna
,
B. V.
,
Satyanarayana
,
B. V. V.
,
Vignesh
,
N. A.
,
Panigrahy
,
A. K.
, and
Ahmadsaidulu
,
S.
,
2022
, “
A Study of an Ultrasensitive Label Free Silicon Nanowire FET Biosensor for Cardiac Troponin I Detection
,”
Silicon
,
14
(
10
), pp.
5683
5690
.
13.
Mortazavifar
,
S. L.
,
Salehi
,
M. R.
,
Shahraki
,
M.
, and
Abiri
,
E.
,
2022
, “
Optimization of Light Absorption in Ultrathin Elliptical Silicon Nanowire Arrays for Solar Cell Applications
,”
J. Mod. Opt.
,
69
(
7
), pp.
368
380
.
14.
El-Bashar
,
R.
,
Hussein
,
M.
,
Hegazy
,
S. F.
,
Badr
,
Y.
,
Rahman
,
B. M. A.
,
Grattan
,
K. T. V.
,
Hameed
,
M. F. O.
, and
Obayya
,
S. S. A.
,
2022
, “
Electrical Performance of Efficient Quad-Crescent-Shaped Si Nanowire Solar Cell
,”
Sci. Rep.
,
12
(
1
), p.
48
.
15.
Yang
,
Y.
,
Yuan
,
W.
,
Kang
,
W.
,
Ye
,
Y.
,
Pan
,
Q.
,
Zhang
,
X.
,
Ke
,
Y.
,
Wang
,
C.
,
Qiu
,
Z.
, and
Tang
,
Y.
,
2020
, “
A Review on Silicon Nanowire-Based Anodes for Next-Generation High-Performance Lithium-Ion Batteries From a Material-Based Perspective
,”
Sustain. Energ. Fuels
,
4
(
4
), pp.
1577
1594
.
16.
Bansal
,
R.
,
Menon
,
P.
, and
Sharma
,
R. C.
,
2020
, “
Silicon–Air Batteries: Progress, Applications and Challenges
,”
SN Appl. Sci.
,
2
(
6
), p.
1141
.
17.
Bartschmid
,
T.
,
Wendisch
,
F. J.
,
Farhadi
,
A.
, and
Bourret
,
G. R.
,
2022
, “
Recent Advances in Structuring and Patterning Silicon Nanowire Arrays for Engineering Light Absorption in Three Dimensions
,”
ACS Appl. Energy Mater.
,
5
(
5
), pp.
5307
5317
.
18.
Akbari-Saatlu
,
M.
,
Procek
,
M.
,
Mattsson
,
C.
,
Thungström
,
G.
,
Nilsson
,
H.-E.
,
Xiong
,
W.
,
Xu
,
B.
,
Li
,
Y.
, and
Radamson
,
H. H.
,
2020
, “
Silicon Nanowires for Gas Sensing: A Review
,”
Nanomaterials
,
10
(
11
), p.
2215
.
19.
Solanki
,
A.
, and
Um
,
H.
,
2018
, “Chapter Two – Top-Down Etching of Si Nanowires,”
Semiconductors and Semimetals
,
S.
Mokkapati
, and
C.
Jagadish
, eds.,
Elsevier
,
New York
, pp.
71
149
.
20.
Daoudi
,
K.
,
Gaidi
,
M.
,
Alawadhi
,
H.
,
Columbus
,
S.
,
Zhang
,
D.
,
Allagui
,
A.
,
Shameer
,
M.
, and
Taieb
,
A.
,
2020
, “
Structural Effects of Silver-Nanoprism-Decorated Si Nanowires on Surface-Enhanced Raman Scattering
,”
Nanotechnology
,
31
(
25
), p.
255706
.
21.
Puglisi
,
R. A.
,
Bongiorno
,
C.
,
Caccamo
,
S.
,
Fazio
,
E.
,
Mannino
,
G.
,
Neri
,
F.
,
Scalese
,
S.
,
Spucches
,
D.
, and
La Magna
,
A.
,
2019
, “
Chemical Vapor Deposition Growth of Silicon Nanowires With Diameter Smaller Than 5 Nm
,”
ACS Omega
,
4
(
19
), pp.
17967
17971
.
22.
Shalabny
,
A.
,
Buonocore
,
F.
,
Celino
,
M.
,
Zhang
,
L.
,
Sardashti
,
K.
,
Härth
,
M.
,
Schubert
,
D. W.
, and
Bashouti
,
M. Y.
,
2022
, “
Enhancing the Electronic Properties of VLS-Grown Silicon Nanowires by Surface Charge Transfer
,”
Appl. Surf. Sci.
,
599
, p.
153957
.
23.
Hamidinezhad
,
H.
, and
Hayati
,
A.
,
2022
, “
VLS Synthesis of Silicon Nanowires Array for Photovoltaic Devices
,”
Silicon
,
14
(
16
), pp.
10257
10261
.
24.
Ramadan
,
S.
,
Bowen
,
L.
,
Popescu
,
S.
,
Fu
,
C.
,
Kwa
,
K. K.
, and
O’Neill
,
A.
,
2020
, “
Fully Controllable Silicon Nanowire Fabricated Using Optical Lithography and Orientation Dependent Oxidation
,”
Appl. Surf. Sci.
,
523
, p.
146516
.
25.
Plugaru
,
R.
,
Fakhri
,
E.
,
Romanitan
,
C.
,
Mihalache
,
I.
,
Craciun
,
G.
,
Plugaru
,
N.
,
Árnason
,
,
Sultan
,
M. T.
,
Nemnes
,
G. A.
,
Ingvarsson
,
S.
,
Svavarsson
,
H. G.
, and
Manolescu
,
A.
,
2022
, “
Structure and Electrical Behavior of Silicon Nanowires Prepared by MACE Process
,”
Surf. Interfaces
,
33
, p.
102167
.
26.
Kochylas
,
I.
,
Dimitriou
,
A.
,
Apostolaki
,
M.-A.
,
Skoulikidou
,
M.-C.
,
Likodimos
,
V.
,
Gardelis
,
S.
, and
Papanikolaou
,
N.
,
2023
, “
Enhanced Photoluminescence of R6G Dyes From Metal Decorated Silicon Nanowires Fabricated Through Metal Assisted Chemical Etching
,”
Materials
,
16
(
4
), p.
1386
.
27.
Lee
,
P.-Y.
,
Weng
,
C.-J.
,
Huang
,
H. J.
,
Wu
,
L.-Y.
,
Lu
,
G.-H.
,
Liu
,
C.-F.
,
Chen
,
C.-Y.
,
Li
,
T.-Y.
, and
Lin
,
Y.-S.
,
2023
, “
Bubble Effects on Manufacturing of Silicon Nanowires by Metal-Assisted Chemical Etching
,”
ASME J. Manuf. Sci. Eng.
,
145
(
9
), p.
094501
.
28.
Leonardi
,
A. A.
,
Faro
,
M. J.
, and
Irrera
,
A.
,
2021
, “
Silicon Nanowires Synthesis by Metal-Assisted Chemical Etching: A Review
,”
Nanomaterials
,
11
(
2
), p.
383
.
29.
Srivastava
,
R. P.
, and
Khang
,
D.-Y.
,
2021
, “
Structuring of Si Into Multiple Scales by Metal-Assisted Chemical Etching
,”
Adv. Mater.
,
33
(
47
), p.
2005932
.
30.
Gawlik
,
B.
,
Barrera
,
C.
,
Yu
,
E. T.
, and
Sreenivasan
,
S. V.
,
2020
, “
Hyperspectral Imaging for High-Throughput, Spatially Resolved Spectroscopic Scatterometry of Silicon Nanopillar Arrays
,”
Opt. Expr.
,
28
(
10
), pp.
14209
14221
.
31.
Lin
,
K.
,
Guo
,
Y.
,
Liu
,
Y.
,
Zhang
,
X.
,
Xiao
,
S.
,
Gao
,
G.
, and
Wu
,
G.
,
2023
, “
Outdoor Detection of the Pollution Degree of Insulating Materials Based on Hyperspectral Model Transfer
,”
Measurement
,
214
, p.
112805
.
32.
Shi
,
W.
,
Koo
,
D. E. S.
,
Kitano
,
M.
,
Chiang
,
H. J.
,
Trinh
,
L. A.
,
Turcatel
,
G.
,
Steventon
,
B.
,
Arnesano
,
C.
,
Warburton
,
D.
,
Fraser
,
S. E.
, and
Cutrale
,
F.
,
2020
, “
Pre-Processing Visualization of Hyperspectral Fluorescent Data With Spectrally Encoded Enhanced Representations
,”
Nat. Commun.
,
11
(
1
), p.
726
.
33.
Lu
,
G.-H.
,
Liu
,
C.-F.
,
Weng
,
C.-J.
, and
Huang
,
S.-L.
,
2023
, “
Hyperspectral Microscope With Tunable Light Source
,”
2023 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
,
Kuala Lumpur, Malaysia
,
May 22–25
, pp.
1
4
.
34.
Yoon
,
J.
,
2022
, “
Hyperspectral Imaging for Clinical Applications
,”
BioChip J.
,
16
(
1
), pp.
1
12
.
35.
Raza
,
A.
,
Dumortier
,
D.
,
Jost-Boissard
,
S.
,
Cauwerts
,
C.
, and
Dubail
,
M.
,
2023
, “
Accuracy of Hyperspectral Imaging Systems for Color and Lighting Research
,”
Leukos
,
19
(
1
), pp.
16
34
.
36.
Hsu
,
W.-L.
,
Huang
,
C.-F.
,
Tan
,
C.-C.
,
Liu
,
N. Y.-C.
,
Chu
,
C. H.
,
Huang
,
P.-S.
,
Wu
,
P. C.
, et al
,
2023
, “
High-Resolution Metalens Imaging With Sequential Artificial Intelligence Models
,”
Nano Lett.
,
23
(
24
), pp.
11614
11620
.
37.
Chang
,
K.-H.
,
Chen
,
Y.-C.
,
Huang
,
Y.-S.
,
Hsu
,
W.-L.
,
Lu
,
G.-H.
,
Liu
,
C.-F.
,
Weng
,
C.-J.
,
Lin
,
Y.-H.
,
Chen
,
C.-C.
,
Lee
,
C.-C.
,
Chang
,
Y.-C.
,
Wang
,
P.-H.
, and
Wang
,
C.-M.
,
2023
, “
Axicon Metalens for Broadband Light Harvesting
,”
Nanophotonics
,
12
(
7
), pp.
1309
1315
.
You do not currently have access to this content.