Abstract

Human–robot collaboration, which strives to combine the best skills of humans and robots, has shown board application prospects in meeting safe–effective–flexible requirements in various fields. The ideation of much closer interaction between humans and robots has greatly developed the exploration of digital twin to enhance collaboration. By offering high-fidelity models and real-time physical–virtual interaction, the digital twin enables to achieve an accurate reflection of the physical scenario, including not only human–robot conditions but also environmental changes. However, the appearance of unpredictable events may cause an inconsistency between the established schedule and actual execution. To cope with this issue, an environment-adaptive assignment method based on digital twin for human–robot collaboration is formed in this study. The proposed approach consists of a factor–event–act mechanism that analyzes the dynamic events and their impacts from both internal and external perspectives of digital twin and a genetic algorithm–based assignment algorithm to respond to them. Experiments are carried out in the last part, aiming to show the feasibility of the proposed method.

References

1.
Tao
,
F.
, and
Qi
,
Q.
,
2019
, “
Make More Digital Twins
,”
Nature
,
573
(
7775
), pp.
490
491
.
2.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
, “Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex System,”
Transdisciplinary Perspectives on Complex Systems
,
J.
Kahlen
,
S.
Flumerfelt
, and
A.
Alves
, eds.,
Springer
,
Cham
, pp.
85
113
.
3.
Tao
,
F.
,
Zhang
,
M.
,
Liu
,
Y.
, and
Nee
,
A. Y. C.
,
2018
, “
Digital Twin Driven Prognostics and Health Management for Complex Equipment
,”
CIRP Ann.
,
67
(
1
), pp.
169
172
.
4.
Zhang
,
M.
,
Tao
,
F.
,
Huang
,
B.
,
Liu
,
A.
,
Wang
,
L.
,
Anwer
,
N.
, and
Nee
,
A. Y. C.
,
2022
, “
Digital Twin Data: Methods and Key Technologies
,”
Digital Twin
,
1
, p.
2
.
5.
Tao
,
F.
,
Ma
,
X.
,
Qi
,
Q.
,
Liu
,
W.
,
Zhang
,
H.
, and
Zhang
,
C.
,
2023
, “
Theory and Key Technologies of Digital Twin Connection and Interaction
,”
Comput. Integr. Manuf. Syst.
,
29
(
1
), pp.
1
10
.
6.
Bilberg
,
A.
, and
Malik
,
A. A.
,
2019
, “
Digital Twin Driven Human–Robot Collaborative Assembly
,”
CIRP Ann.
,
68
(
1
), pp.
499
502
.
7.
Wang
,
Y.
,
Wang
,
X.
,
Tao
,
F.
, and
Liu
,
A.
,
2021
, “
Digital Twin-Driven Complexity Management in Intelligent Manufacturing
,”
Digital Twin
,
1
, p.
9
.
8.
Grieves
,
M.
,
2022
, “
Intelligent Digital Twins and the Development and Management of Complex Systems
,”
Digital Twin
,
2
, p.
8
.
9.
Shen
,
Z.
,
Arraño-Vargas
,
F.
, and
Konstantinou
,
G.
,
2023
, “
Artificial Intelligence and Digital Twins in Power Systems: Trends, Synergies and Opportunities
,”
Digital Twin
,
2
, p.
11
.
10.
Palensky
,
P.
,
Cvetkovic
,
M.
,
Gusain
,
D.
, and
Joseph
,
A.
,
2022
, “
Digital Twins and Their Use in Future Power Systems
,”
Digital Twin
,
1
, p.
4
.
11.
Croatti
,
A.
,
Gabellini
,
M.
,
Montagna
,
S.
, and
Ricci
,
A.
,
2020
, “
On the Integration of Agents and Digital Twins in Healthcare
,”
J. Med. Syst.
,
44
(
9
), pp.
1
8
.
12.
Bruynseels
,
K.
,
Santoni de Sio
,
F.
, and
Van den Hoven
,
J.
,
2018
, “
Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm
,”
Front. Genet.
,
9
, p.
31
.
13.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y. C.
,
2018
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inform.
,
15
(
4
), pp.
2405
2415
.
14.
Ma
,
X.
,
Qi
,
Q.
, and
Tao
,
F.
,
2024
, “
An Ontology-Based Data-Model Coupling Approach for Digital Twin
,”
Robot. Comput. Integr. Manuf.
,
86
, p.
102649
.
15.
He
,
X.
,
Ai
,
Q.
,
Pan
,
B.
,
Tang
,
L.
, and
Qiu
,
R.
,
2022
, “
Spatial-Temporal Data Analysis of Digital Twin
,”
Digital Twin
,
2
, p.
7
.
16.
Kousi
,
N.
,
Gkournelos
,
C.
,
Aivaliotis
,
S.
,
Lotsaris
,
K.
,
Bavelos
,
A. C.
,
Baris
,
P.
,
Michalos
,
G.
, and
Makris
,
S.
,
2021
, “
Digital Twin for Designing and Reconfiguring Human–Robot Collaborative Assembly Lines
,”
Appl. Sci.
,
11
(
10
), p.
4620
.
17.
Malik
,
A. A.
, and
Bilberg
,
A.
,
2018
, “
Digital Twins of Human Robot Collaboration in a Production Setting
,”
Proc. 28th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2018)
,
Columbus, OH
,
June 11–14
, Vol.
17
, pp.
278
285
.
18.
Havard
,
V.
,
Jeanne
,
B.
,
Lacomblez
,
M.
, and
Baudry
,
D.
,
2019
, “
Digital Twin and Virtual Reality: A Co-Simulation Environment for Design and Assessment of Industrial Workstations
,”
Prod. Manuf. Res.
,
7
(
1
), pp.
472
489
.
19.
Malik
,
A. A.
, and
Brem
,
A.
,
2021
, “
Digital Twins for Collaborative Robots: A Case Study in Human-Robot Interaction
,”
Robot. Comput. Integr. Manuf.
,
68
, p.
102092
.
20.
Dröder
,
K.
,
Bobka
,
P.
,
Germann
,
T.
,
Gabriel
,
F.
, and
Dietrich
,
F.
,
2018
, “
A Machine Learning-Enhanced Digital Twin Approach for Human-Robot-Collaboration
,”
Procedia CIRP
,
76
, pp.
187
192
.
21.
Joseph
,
A. J.
,
Kruger
,
K.
, and
Basson
,
A. H.
,
2020
, “
An Aggregated Digital Twin Solution for Human-Robot Collaboration in Industry 4.0 Environments
,”
International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing
, pp.
135
147
.
22.
Pairet
,
È
,
Ardón
,
P.
,
Liu
,
X.
,
Lopes
,
J.
,
Hastie
,
H.
, and
Lohan
,
K. S.
,
2019
, “
A Digital Twin for Human-Robot Interaction
,”
2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)
,
Daegu, South Korea
,
Mar. 11–14
, p.
372
.
23.
Liu
,
S.
,
Wang
,
X. V.
, and
Wang
,
L.
,
2022
, “
Digital Twin-Enabled Advance Execution for Human-Robot Collaborative Assembly
,”
CIRP Ann.
,
71
(
1
), pp.
25
28
.
24.
Lv
,
Q.
,
Zhang
,
R.
,
Sun
,
X.
,
Lu
,
Y.
, and
Bao
,
J.
,
2021
, “
A Digital Twin-Driven Human-Robot Collaborative Assembly Approach in the Wake of COVID-19
,”
J. Manuf. Syst.
,
60
, pp.
837
851
.
25.
Castro
,
P.
,
Högberg
,
D.
,
Ramsen
,
H.
,
Bjursten
,
J.
, and
Hanson
,
L.
,
2019
, “
Virtual Simulation of Human-Robot Collaboration Workstations
,”
Adv. Intell. Syst. Comput.
,
822
, pp.
250
261
.
26.
Fera
,
M.
,
Greco
,
A.
,
Caterino
,
M.
,
Gerbino
,
S.
,
Caputo
,
F.
,
Macchiaroli
,
R.
, and
D’Amato
,
E.
,
2020
, “
Towards Digital Twin Implementation for Assessing Production Line Performance and Balancing
,”
Sensors
,
20
(
1
), p.
97
.
27.
Alirezazadeh
,
S.
, and
Alexandre
,
L. A.
,
2022
, “
Dynamic Task Scheduling for Human-Robot Collaboration
,”
IEEE Robot. Autom. Lett.
,
7
(
4
), pp.
8699
8704
.
28.
Borgi
,
T.
,
Hidri
,
A.
,
Neef
,
B.
, and
Naceur
,
M. S.
,
2017
, “
Data Analytics for Predictive Maintenance of Industrial Robots
,”
International Conference on Advanced Systems and Electric Technologies (IC_ASET)
,
Hammamet, Tunisia
,
Jan. 14–17
, pp.
412
417
.
29.
Koca
,
O.
,
Kaymakci
,
O. T.
, and
Mercimek
,
M.
,
2020
, “
Advanced Predictive Maintenance With Machine Learning Failure Estimation in Industrial Packaging Robots
,”
International Conference on Development and Application Systems (DAS)
,
Suceava, Romania
,
May 21–23
, pp.
1
6
.
30.
Pupa
,
A.
,
Van Dijk
,
W.
,
Brekelmans
,
C.
, and
Secchi
,
C.
,
2022
, “
A Resilient and Effective Task Scheduling Approach for Industrial Human-Robot Collaboration
,”
Sensors
,
22
(
13
), p.
4901
.
31.
Ma
,
X.
,
Qi
,
Q.
,
Cheng
,
J.
, and
Tao
,
F.
,
2022
, “
A Consistency Method for Digital Twin Model of Human-Robot Collaboration
,”
J. Manuf. Syst.
,
65
, pp.
550
563
.
You do not currently have access to this content.