Graphical Abstract Figure

Graphene hydrogels were synthesized under microgravity on the International Space Station and transformed into graphene aerogels confirmed by Raman Spectroscopy and Scanning Electron Microscopy

Graphical Abstract Figure

Graphene hydrogels were synthesized under microgravity on the International Space Station and transformed into graphene aerogels confirmed by Raman Spectroscopy and Scanning Electron Microscopy

Close modal

Abstract

This study reports on the hydrothermal synthesis of graphene hydrogels (GHs) under microgravity on the International Space Station (ISS), using a custom-designed autoclave compatible with NASA's Solidification Using a Baffle in Sealed Ampoules (SUBSA) furnace. Extensive long-term stability tests of graphene oxide (GO) dispersion and GHs in deionized (DI) water were performed to verify their compatibility with the custom-designed autoclaves before launching to the ISS. Eight ampoules (2 autoclaves each, totaling 16 samples) filled with GO dispersion were launched to the ISS and heated to trigger the gelation reaction to synthesize GHs. The effectiveness of the designed leak-before-burst (LBB) safety technology for controlling the pressure inside the autoclave under safety requirements was demonstrated during the heating process on the ISS through the release of water vapor. For comparison, another eight ampoules filled with the GO dispersion were heated at the same temperature on Earth, resulting in 16 total control samples to analyze the effects of microgravity on the multiphysical properties of graphene aerogels (GAs). Both sets of GH samples prepared on the ISS and on Earth were transformed into GAs via solvent exchange to ethanol at ambient conditions, followed by critical point drying using carbon dioxide. Raman spectroscopy and scanning electron microscope (SEM) confirmed the successful synthesis of GAs on the ISS. As a continuation of the work, further characterization experiments are underway to comprehensively analyze the multiphysical properties of the graphene aerogels upon synthesis under microgravity conditions.

References

1.
O’Neill
,
P.
,
2023
, “
Stanford and UC Berkeley Collaborate on Investigation to Produce Superior Graphene Aerogel in Space
,” https://www.issnationallab.org/crew6-stanford-ucberkeley-graphene-aerogel/, Accessed August 24, 2023.
2.
NASA
,
2015
, “
2015 NASA Technology Roadmaps TA 10: Nanotechnology
,” https://www.lpi.usra.edu/sbag/goals/capability_inputs/2015_Tech_10_nanotechnology.pdf, Accessed July 2, 2015.
3.
Kistler
,
S. S.
,
1931
, “
Coherent Expanded Aerogels and Jellies
,”
Nature
,
127
(
3211
), p.
741
.
4.
Kistler
,
S. S.
,
1932
, “
Coherent Expanded Aerogels
,”
Rubber Chem. Technol.
,
5
(
4
), pp.
600
603
.
5.
Li
,
Z.
,
Liu
,
C.
,
Frick
,
J. J.
,
Davey
,
A. K.
,
Dods
,
M. N.
,
Carraro
,
C.
,
Senesky
,
D. G.
, and
Maboudian
,
R.
,
2023
, “
Synthesis and Characterization of UiO-66-NH2 Incorporated Graphene Aerogel Composites and Their Utilization for Absorption of Organic Liquids
,”
Carbon
,
201
(
1
), pp.
561
567
.
6.
Okubo
,
T.
,
Tsuchida
,
A.
,
Kobayashi
,
K.
,
Kuno
,
A.
,
Morita
,
T.
,
Fujishima
,
M.
, and
Kohno
,
Y.
,
1999
, “
Kinetic Study of the Formation Reaction of Colloidal Silica Spheres in Microgravity Using Aircraft
,”
Colloid Polym. Sci.
,
277
(
5
), pp.
474
478
.
7.
Smith
,
D. D.
,
Sibille
,
L.
,
Cronise
,
R. J.
,
Hunt
,
A. J.
,
Oldenburg
,
S. J.
,
Wolfe
,
D.
, and
Halas
,
N. J.
,
2000
, “
Effect of Microgravity on the Growth of Silica Nanostructures
,”
Langmuir
,
16
(
26
), pp.
10055
10060
.
8.
Ratke
,
L.
,
Milow
,
B.
,
Lisinski
,
S.
, and
Hoepfner
,
S.
,
2014
, “
On an Effect of Fine Ceramic Particles on the Structure of Aerogels, Microgravity
,”
Sci. Technol.
,
26
(
2
), pp.
103
110
.
9.
Brück
,
S.
,
Reuß
,
M.
,
Richter
,
H.
,
Klein
,
H.
,
Haubner
,
P.
, and
Ratke
,
L.
,
2005
, “
Gelation of Hybrid Aerogels in Parabolic Flights and on the ISS
,”
Microgravity Sci. Technol.
,
16
(
1–4
), pp.
31
34
.
10.
Hunt
,
A. J.
,
Ayers
,
M. R.
,
Sibille
,
L.
,
Cronise
,
R. J.
, and
Noever
,
D. A.
,
1999
, “
Effects of Microgravity on the Formation of Aerogels
,”
Proceedings of the NASA Microgravity Materials Science Conference
,
Huntsville, AL
,
July 14–16, 1998
, 325, https://ntrs.nasa.gov/citations/19990040296
11.
Frick
,
J. J.
,
Ormsby
,
R.
,
Li
,
Z.
,
Ozbakir
,
Y.
,
Liu
,
C.
,
Cox
,
J. M.
,
Carraro
,
C.
,
Maboudian
,
R.
, and
Senesky
,
D. G.
,
2024
, “
Autoclave Design for Microgravity Hydrothermal Synthesis
,”
Microgravity Sci. Technol.
,
36
(
3
), p.
23
.
12.
Hou
,
W.-C.
,
Chowdhury
,
I.
,
Goodwin
,
D. G.
,
Henderson
,
W. M.
,
Fairbrother
,
D. H.
,
Bouchard
,
D.
, and
Zepp
,
R. G.
,
2015
, “
Photochemical Transformation of Graphene Oxide in Sunlight
,”
Environ. Sci. Technol.
,
49
(
6
), pp.
3435
3443
.
13.
Shams
,
M.
,
Guiney
,
L. M.
,
Huang
,
L.
,
Ramesh
,
M.
,
Yang
,
X.
,
Hersam
,
M. C.
, and
Chowdhury
,
I.
,
2019
, “
Influence of Functional Groups on the Degradation of Graphene Oxide Nanomaterials
,”
Environ. Sci.: Nano
,
6
(
7
), pp.
2203
2214
.
14.
Hou
,
W.-C.
,
Henderson
,
W. M.
,
Chowdhury
,
I.
,
Goodwin
,
D. G.
,
Chang
,
X.
,
Martin
,
S.
,
Fairbrother
,
D. H.
,
Bouchard
,
D.
, and
Zepp
,
R. G.
,
2016
, “
The Contribution of Indirect Photolysis to the Degradation of Graphene Oxide in Sunlight
,”
Carbon
,
110
(
15
), pp.
426
437
.
15.
Wang
,
Z. C.
,
Wei
,
R. B.
,
Gu
,
J. W.
,
Liu
,
H.
,
Liu
,
C. T.
,
Luo
,
C. J.
,
Kong
,
J.
, et al
,
2018
, “
Ultralight, Highly Compressible and Fire-Retardant Graphene Aerogel With Self-Adjustable Electromagnetic Wave Absorption
,”
Carbon
,
139
(
14
), pp.
1126
1135
.
You do not currently have access to this content.