Abstract

Digital maskless lithography is gaining popularity due to its unique ability to quickly fabricate high-resolution parts without the use of physical masks. By implementing controlled grayscaling and exposure control, it has the potential to replace conventional lithography altogether. However, despite the existence of a theoretical foundation for photopolymerization, observing the voxel growth process in situ is a significant challenge. This difficulty can be attributed to several factors, including the microscopic size of the parts, the low refractive index difference between cured and uncured resin, and the rapid rate of photopolymerization once it crosses a certain threshold. As such, there is a pressing need for a system that can address these issues. To tackle these challenges, the paper proposes a modified Schlieren-based observation system that utilizes confocal magnifying optics to create a virtual screen at the camera's focal plane. This system allows for the visualization of the minute changes in refractive indices made visible by the use of Schlieren optics, specifically the deflection of light by the changing density-induced refractive index gradient. The use of focusing optics provides the system with the flexibility needed to position the virtual screen and implement optical magnification. The researchers employed single-shot binary images with different pixel numbers to fabricate voxels and examine the various factors affecting voxel shape, including chemical composition and energy input. The observed results were then compared against simulations based on Beer–Lambert's law, photopolymerization curve, and Gaussian beam propagation theory. The physical experimental results validated the effectiveness of the proposed observation system. The paper also briefly discusses the application of this system in fabricating microlenses and its advantages over theoretical model-based profile predictions.

References

1.
Gibson
,
I.
,
Rosen
,
D. W.
,
Stucker
,
B.
, and
Khorasani
,
M.
,
2021
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
2.
Hu
,
Y.
,
Guo
,
Z.
,
Ragonese
,
A.
,
Zhu
,
T.
,
Khuje
,
S.
,
Li
,
C.
,
Grossman
,
J. C.
,
Zhou
,
C.
,
Nouh
,
M.
, and
Ren
,
S.
,
2020
, “
A 3D-Printed Molecular Ferroelectric Metamaterial
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
44
), pp.
27204
27210
.
3.
Anandakrishnan
,
N.
,
Ye
,
H.
,
Guo
,
Z.
,
Chen
,
Z.
,
Mentkowski
,
K. I.
,
Lang
,
J. K.
,
Rajabian
,
N.
,
Andreadis
,
S. T.
,
Ma
,
Z.
, and
Spernyak
,
J.
,
2021
, “
Fast Stereolithography Printing of Large-Scale Biocompatible Hydrogel Models
,”
Adv. Healthcare Mater.
,
10
(
10
), p.
2002103
.
4.
Lin
,
D.
,
Jin
,
S.
,
Zhang
,
F.
,
Wang
,
C.
,
Wang
,
Y.
,
Zhou
,
C.
, and
Cheng
,
G.
,
2015
, “
3D Stereolithography Printing of Graphene Oxide Reinforced Complex Architectures
,”
Nanotechnology
,
26
(
43
), p.
434003
.
5.
Zhou
,
C.
,
Chen
,
Y.
, and
Waltz
,
R.
,
2009
, “
Optimized Mask Image Projection for Solid Freeform Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
061004
.
6.
Cerwonka
,
E.
, and
Millard
,
F. W.
,
1963
,
Investigation of the Photopolymerization Process
,
General Aniline and Film Corporation
,
Johnson City, NY
.
7.
Dong
,
M. K.
,
Goyal
,
K. G.
,
Worth
,
B.
,
Makkar
,
S.
,
Calhoun
,
W. R.
,
Bali
,
L. M.
, and
Bali
,
S.
,
2013
, “
Accurate in Situ Measurement of Complex Refractive Index and Particle Size in Intralipid Emulsions
,”
J. Biomed. Opt.
,
18
(
8
), p.
087003
.
8.
Emami
,
M. M.
, and
Rosen
,
D. W.
,
2018
, “
An Improved vat Photopolymerization Cure Model Demonstrates Photobleaching Effects
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 13–15
, pp.
1940
1952
.
9.
10.
Fernandez Fernandez
,
A.
,
Brichard
,
B.
, and
Berghmans
,
F.
,
2003
, “
In Situ Measurement of Refractive Index Changes Induced by Gamma Radiation in Germanosilicate Fibers
,”
IEEE Photonics Technol. Lett.
,
15
(
10
), pp.
1428
1430
.
11.
Vaglieco
,
B. M.
,
Beretta
,
F.
, and
d'Alessio
,
A.
,
1990
, “
In Situ Evaluation of the Soot Refractive Index in the UV-Visible From the Measurement of the Scattering and Extinction Coefficients in Rich Flames
,”
Combust. Flame
,
79
(
3–4
), pp.
259
271
.
12.
Li
,
X.
, and
Chen
,
Y.
,
2017
, “
Micro-Scale Feature Fabrication Using Immersed Surface Accumulation
,”
J. Manuf. Process.
,
28
, pp.
531
540
.
13.
Emami
,
M. M.
, and
Rosen
,
D. W.
,
2020
, “
Modeling of Light Field Effect in Deep Vat Polymerization for Grayscale Lithography Application
,”
Addit. Manuf.
,
36
, p.
101595
.
14.
Settles
,
G. S.
, and
Covert
,
E. E.
,
2002
, “
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transport Media
,”
ASME Appl. Mech. Rev.
,
55
(
4
), pp.
B76
B77
.
15.
Zhou
,
C.
,
Ye
,
H.
, and
Zhang
,
F.
,
2014
, “
A Novel Low-Cost Stereolithography Process Based on Vector Scanning and Mask Projection for High-Accuracy, High-Speed, High-Throughput and Large-Area Fabrication
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, Vol. 46285, American Society of Mechanical Engineers, p. V01AT02A068.
16.
Zhou
,
C.
, and
Chen
,
Y.
,
2009
, “
Calibrating Large-Area Mask Projection Stereolithography for Its Accuracy and Resolution Improvements
,”
Proceedings of Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 3–5
.
17.
Zhou
,
C.
,
Xu
,
H.
, and
Chen
,
Y.
,
2021
, “
Spatiotemporal Projection-Based Additive Manufacturing: A Data-Driven Image Planning Method for Subpixel Shifting in a Split Second
,”
Adv. Intell. Syst.
,
3
(
12
) p.
2100079
.
18.
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Additive Manufacturing Based on Optimized Mask Video Projection for Improved Accuracy and Resolution
,”
J. Manuf. Process.
,
14
(
2
), pp.
107
118
.
19.
Jacobs
,
P. F.
,
1992
,
Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
20.
Hwang
,
J. W.
,
Noh
,
S. M.
,
Kim
,
B.
, and
Jung
,
H. W.
,
2015
, “
Gelation and Crosslinking Characteristics of Photopolymerized Poly (Ethylene Glycol) Hydrogels
,”
J. Appl. Polym. Sci.
,
132
(
22
).
21.
Toepler
,
A.
,
1993
,
SPIE Milestone Series MS
, Vol.
61
,
SPIE Press
.
22.
Krehl
,
P.
, and
Engemann
,
S.
,
1995
, “
August Toepler—the First Who Visualized Shock Waves
,”
Shock Waves
,
5
(
1
), pp.
1
18
.
23.
Huang
,
C.
,
Gregory
,
J. W.
, and
Sullivan
,
J. P.
,
2007
, “
A Modified Schlieren Technique for Micro Flow Visualization
,”
Meas. Sci. Technol.
,
18
(
5
), p.
N32
N34
.
24.
Mazumdar
,
A.
,
2013
,
Principles and Techniques of Schlieren Imaging Systems
,
Department of Computer Science, Columbia University, New York
.
25.
Agarwal
,
S.
,
Mallick
,
S. P.
,
Kriegman
,
D.
, and
Belongie
,
S.
,
2004
, “
On Refractive Optical Flow
,”
European Conference on Computer Vision
,
Prague, Czech Republic
,
May 11–14
, Springer, pp.
483
494
.
26.
Tropea
,
C.
,
Yarin
,
A. L.
, and
Foss
,
J. F.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
,
Springer
,
New York
.
27.
Chivate
,
A.
,
2022
,
Voxel Growth Observation Using Schlieren
, https://chizhouub.github.io/public/JMSE/Voxel_growth_video.mp4.
28.
Camposeo
,
A.
,
Persano
,
L.
,
Farsari
,
M.
, and
Pisignano
,
D.
,
2019
, “
Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics
,”
Adv. Opt. Mater.
,
7
(
1
), p.
1800419
.
29.
Hou
,
T.
,
Zheng
,
C.
,
Bai
,
S.
,
Ma
,
Q.
,
Bridges
,
D.
,
Hu
,
A.
, and
Duley
,
W. W.
,
2015
, “
Fabrication, Characterization, and Applications of Microlenses
,”
Appl. Opt.
,
54
(
24
), pp.
7366
7376
.
30.
Yuan
,
W.
,
Li
,
L.-H.
,
Lee
,
W.-B.
, and
Chan
,
C.-Y.
,
2018
, “
Fabrication of Microlens Array and Its Application: A Review
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp.
1
9
.
31.
Sun
,
C.
,
Fang
,
N.
,
Wu
,
D. M.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask
,”
Sens. Actuators, A
,
121
(
1
), pp.
113
120
.
32.
Gao
,
Y.
,
He
,
S.
,
Luo
,
N.
, and
Rao
,
Y.
,
2011
, “
Research on Dynamical-Gradual Greyscale Digital Mask Lithography
,”
J. Mod. Opt.
,
58
(
7
), pp.
573
579
.
33.
Yuan
,
C.
,
Kowsari
,
K.
,
Panjwani
,
S.
,
Chen
,
Z.
,
Wang
,
D.
,
Zhang
,
B.
, and
Ng
,
C. J.-X.
,
2019
, “
Pablo Valdivia Y Alvarado, and Qi Ge, Ultrafast Three-Dimensional Printing of Optically Smooth Microlens Arrays by Oscillation-Assisted Digital Light Processing
,”
ACS Appl. Mater. Interfaces
,
11
(
43
), pp.
40662
40668
.
34.
Chen
,
P.-C.
,
Yeh
,
C.-S.
, and
Hsieh
,
C.-Y.
,
2022
, “
Defocus Digital Light Processing Stereolithography for Rapid Manufacture of Microlens Arrays
,”
Sens. Actuators, A
,
345
, p.
113819
.
35.
Panigrahi
,
P. K.
, and
Muralidhar
,
K.
,
2012
, “Laser Schlieren and Shadowgraph,”
Schlieren and Shadowgraph Methods in Heat and Mass Transfer
,
Springer
,
New York
, pp.
23
46
.
You do not currently have access to this content.