Abstract

Single crystal Ge is a semiconductor that has broad applications, especially in manipulation of infrared light. Diamond machining enables the efficient production of surfaces with tolerances required by the optical industry. During machining of anisotropic single crystals, the cutting direction with respect to the in-plane lattice orientation plays a fundamental role in the final quality of the surface and subsurface. In this study, on-axis face turning experiments were performed on an undoped (111)Ge wafer to investigate the effects of crystal anisotropy and feedrate on the surface and subsurface conditions. Atomic force microscopy and scanning white light interferometry were used to characterize the presence of brittle fracture on the machined surfaces and to evaluate the resultant surface roughness. Raman spectroscopy was performed to evaluate the residual stresses and lattice disorder induced by the tool during machining. Nanoindentation with Berkovich and cube corner indenter tips was performed to evaluate elastic modulus, hardness, and fracture toughness of the machined surfaces and to study their variations with feedrate and cutting direction. Post-indentation studies of selected indentations were also performed to characterize the corresponding quasi-plasticity mechanisms. It was found that an increase of feedrate produced a rotation of the resultant force imparted by the tool indicating a shift from indentation-dominant to cutting-dominant behavior. Fracture increased with the feedrate and showed a higher propensity when the cutting direction belonged to the <112¯> family.

References

1.
Patel
,
M.
, and
Karamalidis
,
A. K.
,
2021
, “
Germanium: A Review of Its US Demand, Uses, Resources, Chemistry, and Separation Technologies
,”
Sep. Purif. Technol.
,
275
, p.
118981
.
2.
Kolesnikov
,
A. I.
,
Kaplunov
,
I. A.
, and
Smirnov
,
Y. M.
,
2005
, “
Optical Transparency of Crystalline Germanium
,”
J. Opt. Technol.
,
72
(
2
), pp.
214
220
.
3.
Dutterer
,
B. S.
,
Lineberger
,
J. L.
,
Smilie
,
P. J.
,
Hildebrand
,
D. S.
,
Harriman
,
T. A.
,
Davies
,
M. A.
,
Suleski
,
T. J.
, and
Lucca
,
D. A.
,
2014
, “
Diamond Milling of an Alvarez Lens in Germanium
,”
Precis. Eng.
,
38
(
2
), pp.
398
408
.
4.
Owen
,
J. D.
,
Troutman
,
J. R.
,
Harriman
,
T. A.
,
Zare
,
A.
,
Wang
,
Y. Q.
,
Lucca
,
D. A.
, and
Davies
,
M. A.
,
2016
, “
The Mechanics of Milling of Germanium for IR Applications
,”
CIRP Ann.
,
65
(
1
), pp.
109
112
.
5.
Nakasuji
,
T.
,
Kodera
,
S.
,
Hara
,
S.
,
Matsunaga
,
H.
,
Ikawa
,
N.
, and
Shimada
,
S.
,
1990
, “
Diamond Turning of Brittle Materials for Optical Components
,”
CIRP Ann.
,
39
(
1
), pp.
89
92
.
6.
Tunesi
,
M.
,
Lucca
,
D. A.
,
Davies
,
M. A.
,
Zare
,
A.
,
Gordon
,
M. C.
,
Sizemore
,
N. E.
, and
Wang
,
Y. Q.
,
2022
, “
Surface Integrity of Diamond Turned (100)Ge
,”
CIRP Proc.
,
108
, pp.
665
669
.
7.
Sparks
,
R. G.
, and
Paesler
,
M. A.
,
1992
, “
Depth Profiling of Residual Stress Along Interrupted Test Cuts in Machined Germanium Crystals
,”
J. Appl. Phys.
,
71
(
2
), pp.
891
897
.
8.
Sparks
,
R. G.
, and
Paesler
,
M. A.
,
1988
, “
Micro-Raman Analysis of Stress in Machined Silicon and Germanium
,”
Precis. Eng.
,
10
(
4
), pp.
191
198
.
9.
Shore
,
P.
,
1995
, “
Machining of Optical Surfaces in Brittle Materials Using an Ultra-Precision Machine Tool
,”
Ph.D. dissertation
,
Cranfield University
,
Bedford, UK
.
10.
Zhou
,
P.
,
Yan
,
Y.
,
Huang
,
N.
,
Wang
,
Z.
,
Kang
,
R.
, and
Guo
,
D.
,
2017
, “
Residual Stress Distribution in Silicon Wafers Machined by Rotational Grinding
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081012
.
11.
Guo
,
X.
,
Li
,
Q.
,
Liu
,
T.
,
Kang
,
R.
,
Jin
,
Z.
, and
Guo
,
D.
,
2017
, “
Advances in Molecular Dynamics Simulation of Ultra-Precision Machining of Hard and Brittle Materials
,”
Front. Mech. Eng.
,
12
(
1
), pp.
89
98
.
12.
Momma
,
K.
, and
Izumi
,
F.
,
2011
, “
VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data
,”
J. Appl. Crystallogr.
,
44
(
6
), pp.
1272
1276
.
13.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
14.
ISO 14577-2
,
2015
, “
Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 2: Verification and Calibration of Testing Machines
.”
15.
Higashi
,
H.
,
Kasahara
,
K.
,
Kudo
,
K.
,
Okamoto
,
H.
,
Moto
,
K.
,
Park
,
J. H.
,
Yamada
,
S.
, et al
,
2015
, “
A Pseudo-Single-Crystalline Germanium Film for Flexible Electronics
,”
Appl. Phys. Lett.
,
106
(
4
), p.
041902
.
16.
Dutta
,
P.
,
Rathi
,
M.
,
Yao
,
Y.
,
Gao
,
Y.
,
Majkic
,
G.
,
Iliev
,
M.
,
Martinez
,
J.
,
Holzapfel
,
B.
, and
Selvamanickam
,
V.
,
2014
, “
Large Grained Single-Crystalline-Like Germanium Thin Film on Flexible Ni–W Tape
,”
RSC Adv.
,
4
(
40
), pp.
21042
21048
.
17.
Li
,
L.
,
Fang
,
X.
,
Chew
,
H. G.
,
Zheng
,
F.
,
Liew
,
T. H.
,
Xu
,
X.
,
Zhang
,
Y.
,
Pan
,
S.
,
Li
,
G.
, and
Zhang
,
L.
,
2008
, “
Crystallinity-Controlled Germanium Nanowire Arrays: Potential Field Rmitters
,”
Adv. Funct. Mater.
,
18
(
7
), pp.
1080
1088
.
18.
Huang
,
X.
,
Ninio
,
F.
,
Brown
,
L. J.
, and
Prawer
,
S.
,
1994
, “
Raman Scattering Studies of Surface Modification in 1.5 MeV Si-Implanted Silicon
,”
J. Appl. Phys.
,
77
(
11
), pp.
5910
5915
.
19.
Tiong
,
K. K.
,
Amirtharaj
,
P. M.
,
Pollak
,
F. H.
, and
Aspnes
,
D. E.
,
1984
, “
Effects of As+ Ion Implantation on the Raman Spectra of GaAs: “Spatial Correlation” Interpretation
,”
Appl. Phys. Lett.
,
44
(
1
), pp.
122
124
.
20.
Dieter
,
G. E.
,
1989
,
Mechanical Metallurgy
,
McGraw-Hill Book Company
,
UK
.
21.
Jacobus
,
K.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2000
, “
Machining-Induced Residual Stress: Experimentation and Modeling
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
20
31
.
22.
Asaumi
,
K.
, and
Minomura
,
S.
,
1978
, “
Effect of Pressure on the Raman Shift in Ge
,”
J. Phys. Soc. Jpn.
,
45
(
3
), pp.
1061
1062
.
23.
Olego
,
D.
, and
Cardona
,
M.
,
1982
, “
Pressure Dependence of Raman Phonons of Ge and 3C-SiC
,”
Phys. Rev. B
,
25
(
2
), pp.
1151
1160
.
24.
Huston
,
L. Q.
,
Kiran
,
M. S. R. N.
,
Smillie
,
L. A.
,
Williams
,
J. S.
, and
Bradby
,
J. E.
,
2017
, “
Cold Nanoindentation of Germanium
,”
Appl. Phys. Lett.
,
111
(
2
), p.
021901
.
25.
Jang
,
J. I.
,
Lance
,
M. J.
,
Wen
,
S.
, and
Pharr
,
G. M.
,
2005
, “
Evidence for Nanoindentation-Induced Phase Transformations in Germanium
,”
Appl. Phys. Lett.
,
86
(
13
), p.
131907
.
26.
Bradby
,
J. E.
,
Williams
,
J. S.
,
Wong-Leung
,
J.
,
Swain
,
M. V.
, and
Munroe
,
P.
,
2002
, “
Nanoindentation-Induced Deformation of Ge
,”
Appl. Phys. Lett.
,
80
(
15
), pp.
2651
2653
.
27.
Oliver
,
D. J.
,
Bradby
,
J. E.
,
Williams
,
J. S.
,
Swain
,
M. V.
, and
Munroe
,
P.
,
2008
, “
Thickness-Dependent Phase Transformation in Nanoindented Germanium Thin Films
,”
Nanotechnology
,
19
(
47
), p.
475709
.
28.
Oliver
,
D. J.
,
Bradby
,
J. E.
,
Williams
,
J. S.
,
Swain
,
M. V.
, and
Munroe
,
P.
,
2009
, “
Rate-Dependent Phase Transformations in Nanoindented Germanium
,”
J. Appl. Phys.
,
105
(
12
), p.
126101
.
29.
Lucca
,
D. A.
,
Herrmann
,
K.
, and
Klopfstein
,
M. J.
,
2010
, “
Nanoindentation: Measuring Methods and Applications
,”
CIRP Ann.—Manuf. Technol.
,
59
(
2
), pp.
803
819
.
30.
Tsui
,
T. Y.
,
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1996
, “
Influences of Stress on the Measurement of Mechanical Properties Using Nanoindentation: Part I. Experimental Studies in an Aluminum Alloy
,”
J. Mater. Res.
,
11
(
3
), pp.
752
759
.
31.
Bauer
,
C. L.
, and
Gordon
,
R. B.
,
1962
, “
Mechanism for Dislocation Pinning in the Alkali Halides
,”
J. Appl. Phys.
,
33
(
2
), pp.
672
682
.
32.
Dieckamp
,
H.
, and
Sosin
,
A.
,
1956
, “
Effect of Electron Irradiation on Young’s Modulus
,”
J. Appl. Phys.
,
27
(
12
), pp.
1416
1418
.
33.
Oliver
,
D. J.
,
Ruffell
,
S.
,
Bradby
,
J. E.
,
Williams
,
J. S.
,
Swain
,
M. V.
,
Munroe
,
P.
, and
Simpson
,
P. J.
,
2009
, “
Nanoindentation of Ion-Implanted Crystalline Germanium
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
80
(
11
), p.
115210
.
34.
Novak
,
M.
,
Lofaj
,
F.
, and
Hviscova
,
P.
,
2013
, “
The Effect of Residual Stresses on Nanoindentation Behavior of Thin W-C Based Coatings
,”
Powder Metall. Prog.
,
13
(
3–4
), pp.
132
138
.
35.
Zare
,
A.
,
Su
,
Q.
,
Gigax
,
J.
,
Shojaee
,
S. A.
,
Nastasi
,
M.
,
Shao
,
L.
, and
Lucca
,
D. A.
,
2017
, “
Effects of Ion Irradiation on Structural and Mechanical Properties of Crystalline Fe/Amorphous SiOC Nanolaminates
,”
Acta Mater.
,
140
, pp.
10
19
.
36.
Fischer-Cripps
,
A. C.
,
2011
,
Nanoindentation, Vol. 2
,
Springer
,
New York
.
37.
Pharr
,
G. M.
,
Tsui
,
T. Y.
,
Bolshakov
,
A.
, and
Oliver
,
W. C.
,
1994
, “
Effects of Residual Stress on the Measurement of Hardness and Elastic Modulus Using Nanoindentation
,”
MRS Online Proc. Libr.
,
338
, pp.
127
134
.
38.
Jang
,
J. I.
, and
Pharr
,
G. M.
,
2008
, “
Influence of Indenter Angle on Cracking in Si and Ge During Nanoindentation
,”
Acta Mater.
,
56
(
16
), pp.
4458
4469
. 0.1016/j.actamat.2008.05.005
39.
Roundy
,
D.
, and
Cohen
,
M. L.
,
2001
, “
Ideal Strength of Diamond, Si, and Ge
,”
Phys. Rev. B
,
64
(
21
), p.
212103
.
40.
Kiran
,
M. S. R. N.
,
Haberl
,
B.
,
Bradby
,
J. E.
, and
Williams
,
J. S.
,
2015
,
Semiconductors Semimetals, Vol. 91
,
Elsevier
,
New York
. pp.
165
203
.
41.
Casellas
,
D.
,
Caro
,
J.
,
Molas
,
S.
,
Prado
,
J. M.
,
Valls
,
I.
,
2007
, “
Fracture Toughness of Carbides in Tool Steels Evaluated by Nanoindentation
,”
Acta Mater.
,
55
(
13
), pp.
4277
4286
.
42.
Anstis
,
G. R.
,
Chantikul
,
P.
,
Lawn
,
B. R.
, and
Marshall
,
D. B.
,
1981
, “
A Critical Evaluation of Indentation Techniques for Measuring Facture Toughness: I, Direct Crack Measurements
,”
J. Am. Ceram. Soc.
,
64
(
9
), pp.
533
538
.
43.
Lugovy
,
M.
,
Slyunyayev
,
V.
,
Orlovskaya
,
N.
,
Blugan
,
G.
,
Kuebler
,
J.
, and
Lewis
,
M.
,
2005
, “
Apparent Fracture Toughness of Si3N4-Based Laminates With Residual Compressive or Tensile Stresses in Surface Layers
,”
Acta Mater.
,
53
(
2
), pp.
289
296
.
You do not currently have access to this content.