Abstract

Metamaterials are designed with intricate geometries to deliver unique properties, and recent years have witnessed an upsurge in leveraging additive manufacturing (AM) to produce metamaterials. However, the frequent occurrence of geometric defects in AM poses a critical obstacle to realizing the desired properties of fabricated metamaterials. Advances in three-dimensional (3D) scanning technologies enable the capture of fine-grained 3D geometric patterns, thereby providing a great opportunity for detecting geometric defects in fabricated metamaterials for property-oriented quality assurance. Realizing the full potential of 3D scanning-based quality control hinges largely on devising effective approaches to process scanned point clouds and extract geometric-pertinent information. In this study, a novel framework is developed to integrate recurrence network-based 3D geometry profiling with deep one-class learning for geometric defect detection in AM of metamaterials. First, we extend existing recurrence network models that focus on image data to represent 3D point clouds, by designing a new mechanism that characterizes points’ geometric pattern affinities and spatial proximities. Then, a one-class graph neural network (GNN) approach is tailored to uncover topological variations of the recurrence network and detect anomalies associated with geometric defects in the fabricated metamaterial. The developed methodology is evaluated through comprehensive simulated and real-world case studies. Experimental results have highlighted the efficacy of the developed methodology in identifying both global and local geometric defects in AM-fabricated metamaterials.

References

1.
Ye
,
Z.
,
Liu
,
C.
,
Tian
,
W.
, and
Kan
,
C.
,
2020
, “
A Deep Learning Approach for the Identification of Small Process Shifts in Additive Manufacturing Using 3D Point Clouds
,”
Procedia Manuf.
,
48
, pp.
770
775
.
2.
Yan
,
H.
,
Paynabar
,
K.
, and
Pacella
,
M.
,
2019
, “
Structured Point Cloud Data Analysis via Regularized Tensor Regression for Process Modeling and Optimization
,”
Technometrics
,
61
(
3
), pp.
385
395
.
3.
Wang
,
R.
,
Wang
,
Y.
,
Devadiga
,
S.
,
Perkins
,
I.
,
Kong
,
Z. J.
, and
Yue
,
X.
,
2021
, “
Structured-Light Three-Dimensional Scanning for Process Monitoring and Quality Control in Precast Concrete Production
,”
PCI J.
,
66
(
6
), pp.
17
32
.
4.
Yang
,
Y.
,
Liu
,
X.
, and
Kan
,
C.
,
2022
, “
Point Cloud Based Online Detection of Geometric Defects for the Certification of Additively Manufactured Mechanical Metamaterials
,”
J. Manuf. Syst.
,
65
, pp.
591
604
.
5.
Liu
,
X.
,
Kan
,
C.
, and
Ye
,
Z.
,
2022
, “
Real-Time Multiscale Prediction of Structural Performance in Material Extrusion Additive Manufacturing
,”
Addit. Manuf.
,
49
, p.
102503
.
6.
Askari
,
M.
,
Hutchins
,
D. A.
,
Thomas
,
P. J.
,
Astolfi
,
L.
,
Watson
,
R. L.
,
Abdi
,
M.
,
Ricci
,
M.
, et al
,
2020
, “
Additive Manufacturing of Metamaterials: A Review
,”
Addit. Manuf.
,
36
, pp.
101562
.
7.
Liu
,
C.
,
Tian
,
W.
, and
Kan
,
C.
,
2022
, “
When AI Meets Additive Manufacturing: Challenges and Emerging Opportunities for Human-Centered Products Development
,”
J. Manuf. Syst.
,
64
, pp.
648
656
.
8.
Liu
,
C.
,
Law
,
A. C. C.
,
Roberson
,
D.
, and
Kong
,
Z. J.
,
2019
, “
Image Analysis-Based Closed Loop Quality Control for Additive Manufacturing With Fused Filament Fabrication
,”
J. Manuf. Syst.
,
51
, pp.
75
86
.
9.
Ye
,
Z.
,
Liu
,
C.
,
Tian
,
W.
, and
Kan
,
C.
,
2021
, “
In-Situ Point Cloud Fusion for Layer-Wise Monitoring of Additive Manufacturing
,”
J. Manuf. Syst.
,
61
, pp.
210
222
.
10.
Biehler
,
M.
,
Yan
,
H.
, and
Shi
,
J.
,
2023
, “
ANTLER: Bayesian Nonlinear Tensor Learning and Modeler for Unstructured, Varying-Size Point Cloud Data
,”
IEEE Trans. Autom. Sci. Eng.
, pp.
1
14
.
11.
Lin
,
W.
,
Shen
,
H.
,
Fu
,
J.
, and
Wu
,
S.
,
2019
, “
Online Quality Monitoring in Material Extrusion Additive Manufacturing Processes Based on Laser Scanning Technology
,”
Precis. Eng.
,
60
, pp.
76
84
.
12.
Marwan
,
N.
,
Romano
,
M. C.
,
Thiel
,
M.
, and
Kurths
,
J.
,
2007
, “
Recurrence Plots for the Analysis of Complex Systems
,”
Phys. Rep.
,
438
(
5–6
), pp.
237
329
.
13.
Kan
,
C.
,
Cheng
,
C.
, and
Yang
,
H.
,
2016
, “
Heterogeneous Recurrence Monitoring of Dynamic Transients in Ultraprecision Machining Processes
,”
J. Manuf. Syst.
,
41
, pp.
178
187
.
14.
Cheng
,
C.
,
Kan
,
C.
, and
Yang
,
H.
,
2016
, “
Heterogeneous Recurrence Analysis of Heartbeat Dynamics for the Identification of Sleep Apnea Events
,”
Comput. Biol. Med.
,
75
, pp.
10
18
.
15.
Chen
,
C.-B.
,
Yang
,
H.
, and
Kumara
,
S.
,
2018
, “
Recurrence Network Modeling and Analysis of Spatial Data
,”
Chaos
,
28
(
8
), p.
085714
.
16.
Yang
,
H.
,
Chen
,
C.-B.
, and
Kumara
,
S.
,
2020
, “
Heterogeneous Recurrence Analysis of Spatial Data
,”
Chaos
,
30
(
1
), p.
013119
.
17.
Chen
,
R.
,
Rao
,
P.
,
Lu
,
Y.
,
Reutzel
,
E. W.
, and
Yang
,
H.
,
2021
, “
Recurrence Network Analysis of Design-Quality Interactions in Additive Manufacturing
,”
Addit. Manuf.
,
39
, p.
101861
.
18.
Chen
,
C.-B.
,
Wang
,
Y.
,
Fu
,
X.
, and
Yang
,
H.
,
2023
, “
Recurrence Network Analysis of Histopathological Images for the Detection of Invasive Ductal Carcinoma in Breast Cancer
,”
IEEE/ACM Trans. Comput. Biol. Bioinf.
, pp.
1
12
.
19.
Samie Tootooni
,
M.
,
Dsouza
,
A.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Kong
,
Z.
, and
Borgesen
,
P.
,
2017
, “
Classifying the Dimensional Variation in Additive Manufactured Parts From Laser-Scanned Three-Dimensional Point Cloud Data Using Machine Learning Approaches
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091005
.
20.
Wang
,
R.
,
Law
,
A. C.
,
Garcia
,
D.
,
Yang
,
S.
, and
Kong
,
Z.
,
2021
, “
Development of Structured Light 3D-Scanner With High Spatial Resolution and Its Applications for Additive Manufacturing Quality Assurance
,”
Int. J. Adv. Manuf. Technol.
,
117
(
3–4
), pp.
845
862
.
21.
Wang
,
R.
,
Standfield
,
B.
,
Dou
,
C.
,
Law
,
A. C.
, and
Kong
,
Z. J.
,
2023
, “
Real-Time Process Monitoring and Closed-Loop Control on Laser Power via a Customized Laser Powder bed Fusion Platform
,”
Addit. Manuf.
,
66
, p.
103449
.
22.
Wi
,
K.
,
Suresh
,
V.
,
Wang
,
K.
,
Li
,
B.
, and
Qin
,
H.
,
2020
, “
Quantifying Quality of 3D Printed Clay Objects Using a 3D Structured Light Scanning System
,”
Addit. Manuf.
,
32
, p.
100987
.
23.
Wang
,
Y.
,
Ruiz
,
C.
, and
Huang
,
Q.
,
2022
, “
Learning and Predicting Shape Deviations of Smooth and Non-Smooth 3d Geometries Through Mathematical Decomposition of Additive Manufacturing
,”
IEEE Trans. Autom. Sci. Eng.
, pp.
1
12
.
24.
Luan
,
H.
, and
Huang
,
Q.
,
2016
, “
Prescriptive Modeling and Compensation of in-Plane Shape Deformation for 3-D Printed Freeform Products
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
1
), pp.
73
82
.
25.
Huang
,
Q.
,
2016
, “
An Analytical Foundation for Optimal Compensation of Three-Dimensional Shape Deformation in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061010
.
26.
Wang
,
A.
,
Song
,
S.
,
Huang
,
Q.
, and
Tsung
,
F.
,
2016
, “
In-Plane Shape-Deviation Modeling and Compensation for Fused Deposition Modeling Processes
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
2
), pp.
968
976
.
27.
Wang
,
Y.
,
Sun
,
W.
,
Jin
,
J.
,
Kong
,
Z.
, and
Yue
,
X.
,
2023
, “
MVGCN: Multi-View Graph Convolutional Neural Network for Surface Defect Identification Using Three-Dimensional Point Cloud
,”
ASME J. Manuf. Sci. Eng.
,
145
(
3
), p.
031004
.
28.
Eckmann
,
J.-P.
,
Kamphorst
,
S. O.
, and
Ruelle
,
D.
,
1995
, “
Recurrence Plots of Dynamical Systems
,”
World Sci. Ser. Nonlinear Sci., Ser. A
,
16
, pp.
441
446
.
29.
Chen
,
Y.
, and
Yang
,
H.
,
2012
, “
Multiscale Recurrence Analysis of Long-Term Nonlinear and Nonstationary Time Series
,”
Chaos, Solitons Fractals
,
45
(
7
), pp.
978
987
.
30.
Yang
,
H.
, and
Chen
,
Y.
,
2014
, “
Heterogeneous Recurrence Monitoring and Control of Nonlinear Stochastic Processes
,”
Chaos
,
24
(
1
), p.
013138
.
31.
Marwan
,
N.
,
Kurths
,
J.
, and
Saparin
,
P.
,
2007
, “
Generalised Recurrence Plot Analysis for Spatial Data
,”
Phys. Lett. A
,
360
(
4–5
), pp.
545
551
.
32.
Yang
,
H.
,
Liu
,
R.
, and
Kumara
,
S.
,
2020
, “
Self-Organizing Network Modelling of 3D Objects
,”
CIRP Ann.
,
69
(
1
), pp.
409
412
.
33.
Zhao
,
C.
,
Yang
,
J.
,
Xiong
,
X.
,
Zhu
,
A.
,
Cao
,
Z.
, and
Li
,
X.
,
2022
, “
Rotation Invariant Point Cloud Analysis: Where Local Geometry Meets Global Topology
,”
Pattern Recognit.
,
127
, p.
108626
.
34.
Yang
,
Q.
,
Ma
,
Z.
,
Xu
,
Y.
,
Li
,
Z.
, and
Sun
,
J.
,
2020
, “
Inferring Point Cloud Quality via Graph Similarity
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
44
(
6
), pp.
3015
3029
.
35.
Wu
,
Z.
,
Song
,
S.
,
Khosla
,
A.
,
Yu
,
F.
,
Zhang
,
L.
,
Tang
,
X.
, and
Xiao
,
J.
,
2015
, “
3d Shapenets: A Deep Representation for Volumetric Shapes
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 22–25
, pp.
1912
1920
.
36.
Huang
,
J.
, and
You
,
S.
,
2012
, “
Point Cloud Matching Based on 3D Self-Similarity
,”
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
,
Providence, RI
,
June 16–21
, pp.
41
48
.
37.
Hoppe
,
H.
,
DeRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
, and
Stuetzle
,
W.
,
1992
, “
Surface Reconstruction From Unorganized Points
,”
Proceedings of the 19th Annual Conference and Exhibition on Computer Graphics and Interactive Techniques
,
Chicago, IL
,
July 26–31
, pp.
71
78
.
38.
Birdal
,
T.
, and
Ilic
,
S.
,
2015
, “
Point Pair Features Based Object Detection and Pose Estimation Revisited
,”
Proceedings of the 2015 International Conference on 3D Vision
,
Lyon, France
,
Oct. 19–22
, pp.
527
535
.
39.
Shamai
,
G.
,
Zibulevsky
,
M.
, and
Kimmel
,
R.
,
2018
, “
Efficient Inter-Geodesic Distance Computation and Fast Classical Scaling
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
42
(
1
), pp.
74
85
.
40.
Shamai
,
G.
,
Zibulevsky
,
M.
, and
Kimmel
,
R.
,
2015
, “
Accelerating the Computation of Canonical Forms for 3D Nonrigid Objects Using Multidimensional Scaling
,”
Proceedings of the 2015 Eurographics Workshop on 3D Object Retrieval
,
Zurich, Switzerland
,
May 2–3
, pp.
71
78
.
41.
Kimmel
,
R.
, and
Sethian
,
J. A.
,
1998
, “
Computing Geodesic Paths on Manifolds
,”
Proc. Natl. Acad. Sci.
,
95
(
15
), pp.
8431
8435
.
42.
Chen
,
Y.
,
Su
,
S.
, and
Yang
,
H.
,
2020
, “
Convolutional Neural Network Analysis of Recurrence Plots for Anomaly Detection
,”
Int. J. Bifurcation Chaos
,
30
(
01
), p.
2050002
.
43.
Wang
,
X.
,
Jin
,
B.
,
Du
,
Y.
,
Cui
,
P.
,
Tan
,
Y.
, and
Yang
,
Y.
,
2021
, “
One-Class Graph Neural Networks for Anomaly Detection in Attributed Networks
,”
Neural Comput. Appl.
,
33
(
18
), pp.
12073
12085
.
44.
Ruff
,
L.
,
Vandermeulen
,
R.
,
Goernitz
,
N.
,
Deecke
,
L.
,
Siddiqui
,
S.A.
,
Binder
,
A.
,
Müller
,
E.
, and
Kloft
,
M.
,
2018
, “
Deep One-Class Classification
,”
Proceedings of the 35th International Conference on Machine Learning
,
Stockholm, Sweden
,
July 10–15
, pp.
4393
4402
.
45.
Kipf
,
T. N.
, and
Welling
,
M.
,
2017
, “
Semi-Supervised Classification With Graph Convolutional Networks
,”
Proceedings of the 5th International Conference on Learning Representations (ICLR)
,
Toulon, France
,
Apr. 24–26
.
46.
Sukchotrat
,
T.
,
Kim
,
S. B.
, and
Tsung
,
F.
,
2009
, “
One-Class Classification-Based Control Charts for Multivariate Process Monitoring
,”
IIE Trans.
,
42
(
2
), pp.
107
120
.
47.
Al-Ketan
,
O.
, and
Abu Al-Rub
,
R. K.
,
2021
, “
MSLattice: A Free Software for Generating Uniform and Graded Lattices Based on Triply Periodic Minimal Surfaces
,”
Mater. Des. Process. Commun.
,
3
(
6
), p.
e205
.
48.
Maskery
,
I.
,
Sturm
,
L.
,
Aremu
,
A. O.
,
Panesar
,
A.
,
Williams
,
C. B.
,
Tuck
,
C. J.
,
Wildman
,
R. D.
,
Ashcroft
,
I. A.
, and
Hague
,
R. J. M.
,
2018
, “
Insights Into the Mechanical Properties of Several Triply Periodic Minimal Surface Lattice Structures Made by Polymer Additive Manufacturing
,”
Polymer
,
152
, pp.
62
71
.
49.
Li
,
X.
,
Yu
,
X.
,
Chua
,
J. W.
,
Lee
,
H. P.
,
Ding
,
J.
, and
Zhai
,
W.
,
2021
, “
Microlattice Metamaterials With Simultaneous Superior Acoustic and Mechanical Energy Absorption
,”
Small
,
17
(
24
), p.
2100336
.
50.
Kan
,
C.
,
Ye
,
Z.
,
Zhou
,
H.
, and
Cheruku
,
S. R.
,
2023
, “
DG-ECG: Multi-Stream Deep Graph Learning for the Recognition of Disease-Altered Patterns in Electrocardiogram
,”
Biomed. Signal Process. Control
,
80
, p.
104388
.
51.
Tax
,
D. M. J.
, and
Duin
,
R. P. W.
,
2004
, “
Support Vector Data Description
,”
Mach. Learn.
,
54
(
1
), pp.
45
66
.
52.
Wang
,
L.-C.
,
Song
,
W.-L.
, and
Fang
,
D.
,
2018
, “
Twistable Origami and Kirigami: From Structure-Guided Smartness to Mechanical Energy Storage
,”
ACS Appl. Mater. Interfaces
,
11
(
3
), pp.
3450
3458
.
53.
Liu
,
K.
,
Novelino
,
L. S.
,
Gardoni
,
P.
, and
Paulino
,
G. H.
,
2020
, “
Big Influence of Small Random Imperfections in Origami-Based Metamaterials
,”
Proc. R. Soc. A
,
476
(
2241
), p.
20200236
.
You do not currently have access to this content.