Abstract

This technical brief reports an experimental investigation on the effect of feed region density on resultant sintered density and intermediate densities (powder bed density and green density) during the binder jetting additive manufacturing process. The feed region density was increased through compaction. The powder bed density and green density were determined by measuring the mass and dimension. The sintered density was measured with the Archimedes’ method. As the relative feed region density increased from 44% to 65%, the powder bed density increased by 5.7%, green density by 8.5%, and finally sintered density by 4.5%. Statistical testing showed that these effects were significant. This study showed that compacting the powder in the feed region is an effective method to alter the density of parts made via binder jetting additive manufacturing.

References

1.
Ziaee
,
M.
, and
Crane
,
N. B.
,
2019
, “
Binder Jetting: A Review of Process, Materials, and Methods
,”
Addit. Manuf.
,
28
, pp.
781
801
.
2.
Lv
,
X.
,
Ye
,
F.
,
Cheng
,
L.
,
Fan
,
S.
, and
Liu
,
Y.
,
2019
, “
Binder Jetting of Ceramics: Powders, Binders, Printing Parameters, Equipment, and Post-Treatment
,”
Ceram. Int.
,
45
(
10
), pp.
12609
12624
.
3.
Mostafaei
,
A.
,
Elliott
,
A. M.
,
Barnes
,
J. E.
,
Li
,
F.
,
Tan
,
W.
,
Cramer
,
C. L.
,
Nandwana
,
P.
, and
Chmielus
,
M.
,
2021
, “
Binder Jet 3D Printing—Process Parameters, Materials, Properties, Modeling, and Challenges
,”
Prog. Mater. Sci.
,
119
, p.
100707
.
4.
Li
,
M.
,
Du
,
W.
,
Elwany
,
A.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Metal Binder Jetting Additive Manufacturing: A Literature Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
090801
.
5.
Du
,
W.
,
Ren
,
X.
,
Ma
,
C.
, and
Pei
,
Z.
,
2020
, “
Ceramic Binder Jetting Additive Manufacturing: A Literature Review on Density
,”
ASME J. Manuf. Sci. Eng.
,
142
(
4
), p.
040801
.
6.
Gonzalez
,
J.
,
Mireles
,
J.
,
Lin
,
Y.
, and
Wicker
,
R.
,
2016
, “
Characterization of Ceramic Components Fabricated Using Binder Jetting Additive Manufacturing Technology
,”
Ceram. Int.
,
42
(
9
), pp.
10559
10564
.
7.
Mariani
,
M.
,
Beltrami
,
R.
,
Brusa
,
P.
,
Galassi
,
C.
,
Ardito
,
R.
, and
Lecis
,
N.
,
2021
, “
3D Printing of Fine Alumina Powders by Binder Jetting
,”
J. Eur. Ceram. Soc.
,
41
(
10
), pp.
5307
5315
.
8.
Rishmawi
,
I.
, and
Vlasea
,
M.
,
2021
, “
Binder Jetting of Silicon Steel, Part I: Process Map of Green Density
,”
ASME J. Manuf. Sci. Eng.
,
143
(
11
), p.
111010
.
9.
Vlasea
,
M.
,
Shanbhag
,
G.
, and
Wheat
,
E.
,
2020
, “
The Master Sinter Curve and Its Application to Binder Jetting Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
101002
.
10.
Miao
,
G.
,
Du
,
W.
,
Moghadasi
,
M.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Ceramic Binder Jetting Additive Manufacturing: Effects of Granulation on Properties of Feedstock Powder and Printed and Sintered Parts
,”
Addit. Manuf.
,
36
, p.
101542
.
11.
Moghadasi
,
M.
,
Du
,
W.
,
Li
,
M.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Ceramic Binder Jetting Additive Manufacturing: Effects of Particle Size on Feedstock Powder and Final Part Properties
,”
Ceram. Int.
,
46
(
10
), pp.
16966
16972
.
12.
Du
,
W.
,
Roa
,
J.
,
Hong
,
J.
,
Liu
,
Y.
,
Pei
,
Z.
, and
Ma
,
C.
,
2021
, “
Binder Jetting Additive Manufacturing: Effect of Particle Size Distribution on Density
,”
ASME J. Manuf. Sci. Eng.
,
143
(
9
), p.
091002
.
13.
Li
,
M.
,
Miao
,
G.
,
Moghadasi
,
M.
,
Pei
,
Z.
, and
Ma
,
C.
,
2021
, “
Ceramic Binder Jetting Additive Manufacturing: Relationships Among Powder Properties, Feed Region Density, and Powder Bed Density
,”
Ceram. Int.
,
47
(
17
), pp.
25147
25151
.
14.
Fine Ceramics
,
2020
, “
Advanced Ceramics, Advanced Technical Ceramics—Determination of Density and Apparent Porosity
,” International Organization for Standardization (ISO 18754:2020).
You do not currently have access to this content.