Abstract
Advanced three-dimensional (3D) scanning technology has been widely used in many industries to collect the massive point cloud data of artifacts for part dimension measurement and shape analysis. Though point cloud data has product surface quality information, it is challenging to conduct effective surface anomaly classification due to the complex data representation, high-dimensionality, and inconsistent size of the 3D point cloud data within each sample. To deal with these challenges, this paper proposes a tensor voting-based approach for anomaly classification of artifact surfaces. A case study based on 3D scanned data obtained from a manufacturing plant shows the effectiveness of the proposed method.
Issue Section:
Research Papers
Keywords:
surface monitoring,
anomaly classification,
tensor voting,
3D point cloud data,
product surface inspection,
inspection and quality control,
metrology,
sensing,
monitoring,
and diagnostics
Topics:
Tensors
References
1.
Popa
, E. M.
, and Kiss
, I.
, 2011
, “Assessment of Surface Defects in the Continuously Cast Steel
,” Acta Tech. Corviniensis-Bull. Eng.
, 4
(4
), p. 109
.2.
Bao
, L.
, Wang
, K.
, and Jin
, R.
, 2014
, “A Hierarchical Model for Characterising Spatial Wafer Variations
,” Int. J. Prod. Res.
, 52
(6
), pp. 1827
–1842
. 3.
Colosimo
, B. M.
, Cicorella
, P.
, Pacella
, M.
, and Blaco
, M.
, 2014
, “From Profile to Surface Monitoring: SPC for Cylindrical Surfaces via Gaussian Processes
,” J. Qual. Technol.
, 46
(2
), pp. 95
–113
. 4.
Dastoorian
, R.
, Elhabashy
, A. E.
, Tian
, W.
, Wells
, L. J.
, and Camelio
, J. A.
, 2018
“Automated Surface Inspection Using 3D Point Cloud Data in Manufacturing:
A
Case Study
,” ASME 2018 13th International Manufacturing Science and Engineering Conference
, College Station, TX
, June 18–22
, p. V003T02A036
.5.
Yan
, H.
, Pacella
, M.
, and Paynabar
, K.
, 2019
, “Structured Point Cloud Data Modeling via Regularized Tensor Decomposition and Regression
,” Technometrics
, 61
(3
), pp. 385
–395
. 6.
Gahrooei
, M. R.
, Yan
, H.
, Paynabar
, K.
, and Shi
, J.
, 2020
, “Multiple Tensor on Tensor Regression: An Approach for Modeling Processes With Heterogeneous Sources of Data
,” Technometrics
, 63
(2
), pp. 147–159. 7.
Wells
, L. J.
, Megahed
, F. M.
, Niziolek
, C. B.
, Camelio
, J. A.
, and Woodall
, W. H.
, 2013
, “Statistical Process Monitoring Approach for High-Density Point Clouds
,” J. Intell. Manuf.
, 24
(6
), pp. 1267
–1279
. 8.
Colosimo
, B. M.
, Mammarella
, F.
, and Petro
, S.
, 2010
, “Quality Control of Manufactured Surfaces,” Frontiers in Statistical Quality Control 9
, H. J.
Lenz
, P. T.
Wilrich
, and W.
Schmid
, eds., Springer
, New York
, pp. 55
–70
.9.
Huang
, D.
, Du
, S.
, Li
, G.
, Zhao
, C.
, and Deng
, Y.
, 2018
, “Detection and Monitoring of Defects on Three-Dimensional Curved Surfaces Based on High-Density Point Cloud Data
,” Precis. Eng.
, 53
, pp. 79
–95
. 10.
Ren
, J.
, and Wang
, H.
, 2019
, “Surface Variation Modeling by Fusing Multiresolution Spatially Nonstationary Data Under a Transfer Learning Framework
,” ASME J. Manuf. Sci. Eng.
, 141
(1
), p. 011002
. 11.
Wells
, L. J.
, Shafae
, M. S.
, and Camelio
, J. A.
, 2016
, “Automated Surface Defect Detection Using High-Density Data
,” ASME J. Manuf. Sci. Eng.
, 138
(7
), p. 071001
. 12.
Zhao
, X.
, and Del Castillo
, E.
, 2020
, “An Intrinsic Geometrical Approach for Statistical Process Control of Surface and Manifold Data
,” Technometrics
, 63
, pp. 1
–18
. 13.
Samie Tootooni
, M.
, Dsouza
, A.
, Donovan
, R.
, Rao
, P. K.
, Kong
, Z. J.
, and Borgesen
, P.
, 2017
, “Classifying the Dimensional Variation in Additive Manufactured Parts From Laser-Scanned Three-Dimensional Point Cloud Data Using Machine Learning Approaches
,” ASME J. Manuf. Sci. Eng.
, 139
(9
), p. 091005
. 14.
Yacob
, F.
, Semere
, D.
, and Nordgren
, E.
, 2019
, “Anomaly Detection in Skin Model Shapes Using Machine Learning Classifiers
,” Int. J. Adv. Manuf. Technol.
, 105
, pp. 1
–13
. 15.
Himmelsbach
, M.
, Luettel
, T.
, and Wuensche
, H.-J.
, 2009
, “Real-Time Object Classification in 3D Point Clouds Using Point Feature Histograms
,” 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
, IEEE
, pp. 994
–1000
.16.
Wohlkinger
, W.
, and Vincze
, M.
, 2011
, “Ensemble of Shape Functions for 3D Object Classification
,” 2011 IEEE International Conference on Robotics and Biomimetics
, Karon Beach, Thailand
, Dec. 7–11
, pp. 2987
–2992
.17.
Qi
, C. R.
, Su
, H.
, Mo
, K.
, and Guibas
, L. J.
, 2017
, “Pointnet: Deep Learning on Point Sets for 3D Classification and Segmentation
,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Honolulu, HI
, July 21–26
, pp. 652
-660
.18.
Rodríguez-Cuenca
, B.
, García-Cortés
, S.
, Ordóñez
, C.
, and Alonso
, M.
, 2015
, “Automatic Detection and Classification of Pole-Like Objects in Urban Point Cloud Data Using an Anomaly Detection Algorithm
,” Remote Sens.
, 7
(10
), pp. 12680
–12703
. 19.
Qi
, C. R.
, Yi
, L.
, Su
, H.
, and Guibas
, L. J.
, 2017
, “PointNet++: Deep Hierarchical Feature Learning on Point Sets
in
a Metric Space
,” The Neural Information Processing Systems
, Long Beach, CA
, June 7
, pp. 5105
–5114
.20.
Zhao
, H.
, Jiang
, L.
, Fu
, C.-W.
, and Jia
, J.
, 2019
, “PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing
,” The Computer Vision and Pattern Recognition
, Long Beach, CA
, June 15
, pp. 5560
–5568
.21.
Guy
, G.
, and Medioni
, G.
, 1997
, “Inference of Surfaces, 3D Curves, and Junctions From Sparse, Noisy, 3D Data
,” IEEE Trans. Pattern Anal. Mach. Intell.
, 19
(11
), pp. 1265
–1277
. 22.
Medioni
, G.
, Tang
, C.-K.
, and Lee
, M.-S.
, 2000
, “Tensor Voting: Theory
and
Applications
,” Proceedings of RFIA
, Paris, France
, vol. 3
.23.
Wu
, T. P.
, Yeung
, S.-K.
, Jia
, J.
, Tang
, C.-K.
, and Medioni
, G.
, 2012
, “A Closed-Form Solution to Tensor Voting: Theory and Applications
,” IEEE Trans. Pattern Anal. Mach. Intell.
, 34
(8
), pp. 1482
–1495
. 24.
Granlund
, G. H.
, and Knutsson
, H.
, 1995
, Signal Processing for Computer Vision
, Springer
, Berlin
.25.
D'Errico
, J.
, “Shape Language Modeling
.” https://www.mathworks.com/matlabcentral/fileexchange/24443-slm-shape-language-modeling, Accessed April 27, 2018.26.
Camisani-Calzolari
, F.
, Craig
, I.
, and Pistorius
, P.
, 2003
, “A Review on Causes of Surface Defects in Continuous Casting
,” IFAC Proc. Vol.
, 36
(24
), pp. 113
–121
. 27.
Söderkvist
, I.
, 2009
, “Using SVD for Some Fitting Problems
,” University Lecture, https://www.ltu.se/cms_fs/1.51590!/svd-fitting.pdf, Accessed April 27, 2018.28.
Boser
, B. E.
, 1992
, “A Training Algorithm for Optimal Margin Classifiers
,” Proceedings of the Fifth Annual Workshop on Computational Learning Theory
, Pittsburgh, PA
, July 27–29
, ACM
, Vol. 5
, pp. 144
–152
.29.
Cortes
, C.
, and Vapnik
, V.
, 1995
, “Support-Vector Networks
,” Mach. Learn.
, 20
(3
), pp. 273
–297
. 30.
Lee
, Y.
, Lin
, Y.
, and Wahba
, G.
, 2004
, “Multicategory Support Vector Machines: Theory and Application to the Classification of Microarray Data and Satellite Radiance Data
,” J. Am. Stat. Assoc.
, 99
(465
), pp. 67
–81
. 31.
Huang
, L.
, Hao
, H. Z.
, Zeng
, Z. B.
, and Bushel
, P. R.
, 2013
, “Improved Sparse Multi-Class SVM and Its Application for Gene Selection in Cancer Classification
,” Cancer Inf.
, 12
(12
), pp. 143
–153
. 32.
Crammer
, K.
, and Singer
, Y.
, 2002
, “On the Algorithmic Implementation of Multiclass Kernel-Based Vector Machines
,” J. Mach. Learn. Res.
, 2
(2
), pp. 265
–292
. 33.
Wu
, T. P.
, Yeung
, S. K.
, Jia
, J.
, and Tang
, C. K.
, 2010
, “Quasi-Dense 3D Reconstruction Using Tensor-Based Multiview Stereo
,” 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, San Francisco, CA
, June 13–18
, pp. 1482
–1489
.Copyright © 2021 by ASME
You do not currently have access to this content.