Abstract

The mist distribution is a critical factor in through-tool minimum quantity lubrication (MQL) drilling since a small amount of lubricant is used. However, it has rarely been discussed because of the difficulty in measuring the mist flow experimentally. In this paper, an optical approach is developed to approximate the mist distribution by using high-speed images from multiple angles. Drill bits with two through-tool channel shapes (circle and triangle) and three helix angles (0 deg, 30 deg, and 45 deg) are 3D printed for mist distribution analysis. Furthermore, computational fluid dynamics (CFD) is conducted to investigate the underlying physics behind mist flow variations. The results show that, in the circular channel, the mist is concentrated near the periphery; the low concentration region shifts away from the chisel point as the helix angle increases. For the triangular channel, the mist is concentrated near three vertices but is less affected by the helix angle. Furthermore, based on the CFD solution, high mist concentration tends to be in low-velocity regions and vice versa. This study confirms a noticeable difference of mist flow distribution in different through-tool channel designs.

References

1.
Tai
,
B. L.
,
Stephenson
,
D. A.
,
Furness
,
R. J.
, and
Shih
,
A. J.
,
2014
, “
Minimum Quantity Lubrication (MQL) in Automotive Powertrain Machining
,”
Procedia CIRP, 14(6th CIRP International Conference on High Performance Cutting, HPC2014)
, pp.
523
528
. 10.1016/j.procir.2014.03.044
2.
Furness
,
R.
,
Stoll
,
A.
,
Nordstrom
,
G.
,
Martini
,
G.
,
Johnson
,
J.
,
Loch
,
T.
, and
Klosinski
,
R.
,
2006
, “
Minimum Quantity Lubrication (MQL) Machining for Complex Powertrain Components
,”
Proceedings of the ASME 2006 International Manufacturing Science and Engineering Conference. Manufacturing Science and Engineering, Parts A and B.
,
Ypsilanti, Michigan
,
Oct. 8–11
https://doi.org/10.1115/MSEC2006-21112.
3.
Stephenson
,
D. A.
, and
Agapiou
,
J. S.
,
2016
,
Metal Cutting Theory and Practice
,
CRC Press
,
Boca Raton, FL
.
4.
Stephenson
,
D. A.
,
Hughey
,
E.
, and
Hasham
,
A. A.
,
2019
, “
Air Flow and Chip Removal in Minimum Quantity Lubrication Drilling
,”
Procedia Manufacturing
,
34
, pp.
335
342
. 10.1016/j.promfg.2019.06.171
5.
Aoyama
,
T.
,
Kakinuma
,
Y.
,
Yamashita
,
M.
, and
Aoki
,
M.
,
2008
, “
Development of a New Lean Lubrication System for Near Dry Machining Process
,”
CIRP Ann.
,
57
(
1
), pp.
125
128
. 10.1016/j.cirp.2008.03.094
6.
Filipovic
,
A.
, and
Stephenson
,
D. A.
,
2006
, “
Minimum Quantity Lubrication (MQL) Applications in Automotive Power-Train Machining
,”
Mach. Sci. Technol.
,
10
(
1
), pp.
3
22
. 10.1080/10910340500534258
7.
Heinemann
,
R.
,
Hinduja
,
S.
,
Barrow
,
G.
, and
Petuelli
,
G.
,
2006
, “
Effect of MQL on the tool life of small twist drills in deep-hole drilling
,”
J. Mach. Tools Manuf.
,
46
(
1
), pp.
1
6
. https://doi.org/10.1016/j.ijmachtools.2005.04.003
8.
Lerma
,
I.
,
Jimenez
,
M.
,
Edinbarough
,
I.
,
Krell
,
J.
, and
Hung
,
N. P.
,
2015
, “
Characterization of Micromist for Effective Minimum Quantity Lubrication
,”
Adv. Mater. Res.
,
1115
, pp.
43
46
. www.scientific.net/AMR.1115.43
9.
Tai
,
B. L.
,
Jessop
,
A. J.
,
Stephenson
,
D. A.
, and
Shih
,
A. J.
,
2012
, “
Workpiece Thermal Distortion in Minimum Quantity Lubrication Deep Hole Drilling—Finite Element Modeling and Experimental Validation
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011008
. 10.1115/1.4005432
10.
Tasdelen
,
B.
,
Wikblom
,
T.
, and
Ekered
,
S.
,
2008
, “
Studies on Minimum Quantity Lubrication (MQL) and Air Cooling at Drilling
,”
J. Mater. Process. Technol.
,
200
(
1
), pp.
339
346
. 10.1016/j.jmatprotec.2007.09.064
11.
Vivek
,
T. G.
,
Vikas
,
T. P.
,
Kuppan
,
P.
,
Balan
,
A. S. S.
, and
Oyyaravelu
,
R.
,
2016
, “
Experimental Investigation of Machining Parameter Under MQL Milling of SS304
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
149
(
1
), p.
012023
. 10.1088/1757-899x/149/1/012023
12.
Dhar
,
N. R.
,
Kamruzzaman
,
M.
, and
Ahmed
,
M.
,
2006
, “
Effect of Minimum Quantity Lubrication (MQL) on Tool Wear and Surface Roughness in Turning AISI-4340 Steel
,”
J. Mater. Process. Technol.
,
172
(
2
), pp.
299
304
. 10.1016/j.jmatprotec.2005.09.022
13.
Sharma
,
A. K.
,
Tiwari
,
A. K.
, and
Dixit
,
A. R.
,
2016
, “
Effects of Minimum Quantity Lubrication (MQL) in Machining Processes Using Conventional and Nanofluid Based Cutting Fluids: A Comprehensive Review
,”
J. Cleaner Prod.
,
127
, pp.
1
18
. 10.1016/j.jclepro.2016.03.146
14.
Zhu
,
G.
,
Yuan
,
S.
, and
Chen
,
B.
,
2019
, “
Numerical and Experimental Optimizations of Nozzle Distance in Minimum Quantity Lubrication (MQL) Milling Process
,”
Int. J. Adv. Manuf. Technol.
,
101
(
1
), pp.
565
578
. 10.1007/s00170-018-2928-3
15.
Masoudi
,
S.
,
Vafadar
,
A.
,
Hadad
,
M.
, and
Jafarian
,
F.
,
2018
, “
Experimental Investigation Into the Effects of Nozzle Position, Workpiece Hardness, and Tool Type in MQL Turning of AISI 1045 Steel
,”
Mater. Manufac. Process.
,
33
(
9
), pp.
1011
1019
. https://doi.org/10.1080/10426914.2017.1401716
16.
López de Lacalle
,
L. N.
,
Angulo
,
C.
,
Lamikiz
,
A.
, and
Sánchez
,
J. A.
,
2006
, “
Experimental and Numerical Investigation of the Effect of Spray Cutting Fluids in High Speed Milling
,”
J. Mater. Process. Technol.
,
172
(
1
), pp.
11
15
. 10.1016/j.jmatprotec.2005.08.014
17.
Ueda
,
T.
,
Hosokawa
,
A.
, and
Yamada
,
K.
,
2005
, “
Effect of Oil Mist on Tool Temperature in Cutting
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
130
135
. 10.1115/1.2039099
18.
Park
,
K.-H.
,
Olortegui-Yume
,
J.
,
Yoon
,
M.-C.
, and
Kwon
,
P. J. I. J. O. M. T.
,
2010
, “
A Study on Droplets and Their Distribution for Minimum Quantity Lubrication (MQL)
,”
Int. J. Mach. Tools Manuf.
,
50
(
9
), pp.
824
833
. 10.1016/j.ijmachtools.2010.05.001
19.
Husted
,
B. P.
,
Petersson
,
P.
,
Lund
,
I.
, and
Holmstedt
,
G.
,
2009
, “
Comparison of PIV and PDA Droplet Velocity Measurement Techniques on Two High-Pressure Water Mist Nozzles
,”
Fire Safety J.
,
44
(
8
), pp.
1030
1045
. 10.1016/j.firesaf.2009.07.003
20.
Rahim
,
E. A.
, and
Dorairaju
,
H.
,
2018
, “
Evaluation of Mist Flow Characteristic and Performance in Minimum Quantity Lubrication (MQL) Machining
,”
Measurement
,
123
, pp.
213
225
. 10.1016/j.measurement.2018.03.015
21.
Sovani
,
S. D.
,
Chou
,
E.
,
Sojka
,
P. E.
,
Gore
,
J. P.
,
Eckerle
,
W. A.
, and
Crofts
,
J. D.
,
2001
, “
High Pressure Effervescent Atomization: Effect of Ambient Pressure on Spray Cone Angle
,”
Fuel
,
80
(
3
), pp.
427
435
. 10.1016/S0016-2361(00)00105-8
22.
Chen
,
Z.
,
Atmadi
,
A.
,
Stephenson
,
D. A.
,
Liang
,
S. Y.
, and
Patri
,
K. V.
,
2000
, “
Analysis of Cutting Fluid Aerosol Generation for Environmentally Responsible Machining
,”
CIRP Ann.
,
49
(
1
), pp.
53
56
. 10.1016/S0007-8506(07)62894-7
23.
Dasch
,
J.
, and
Kurgin
,
S.
,
2010
, “
A Characterisation of Mist Generated From Minimum Quantity Lubrication (MQL) Compared to Wet Machining
,”
Inter. J. Mach. Machin. Mater.
,
7
(
1
), pp.
82
95
. 10.1504/IJMMM.2010.029847
24.
Duchosal
,
A.
,
Leroy
,
R.
,
Vecellio
,
L.
,
Louste
,
C.
, and
Ranganathan
,
N.
,
2013
, “
An Experimental Investigation on Oil Mist Characterization Used in MQL Milling Process
,”
Int. J. Adv. Manuf. Technol.
,
66
(
5
), pp.
1003
1014
. 10.1007/s00170-012-4384-9
25.
Falcone
,
G.
,
Hewitt
,
G.
, and
Alimonti
,
C.
,
2009
,
Multiphase Flow Metering: Principles and Applications
,
Elsevier
,
New York
.
26.
Khan
,
W. A.
,
Hoang
,
N. M.
,
Tai
,
B.
, and
Hung
,
W. N. P.
,
2018
, “
Through-Tool Minimum Quantity Lubrication and Effect on Machinability
,”
J. Manuf. Proc.
,
34
(
B
), pp.
750
757
. https://doi.org/10.1016/j.jmapro.2018.03.047
27.
Hewson
,
A. S. J.
,
Merson
,
R.
,
Summers
,
J. E.
, and
Thompson
,
H.
,
2014
, “
Internal Twist Drill Coolant Channel Modelling Using Computational Fluid Dynamics
,” In:
Oñate
,
E
,
Oliver
,
J
and
Huerta
,
A
, (eds.)
Proceedings, vol. II. 11th World Congress on Computational Mechanics (WCCM), 5th European Conference on Computational Mechanics (ECCM), 6th European Conference on Computational Fluid Dynamics (ECFD)
,
Barcelona, Spain
,
July 20–25
.
28.
Tai
,
B. L.
,
Dasch
,
J. M.
, and
Shih
,
A. J.
,
2011
, “
Evaluation and Comparison of Lubricant Properties in Minimum Quantity Lubrication Machining
,”
Mach. Sci. Technol.
,
15
(
4
), pp.
376
391
. 10.1080/10910344.2011.620910
29.
Li
,
Q.
,
Lerma
,
I.
,
Alvarado
,
J.
,
Edinbarough
,
I.
, and
Hung
,
W. N. P.
,
2015
, “
Characterization of Micromist for Effective Machining
,”
ASME 2015 International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 13–19
, p.
V02AT02A058
.
30.
Tai
,
B.
,
Stephenson
,
D.
,
Furness
,
R.
, and
Shih
,
A.
,
2017
,
Minimum Quantity Lubrication for Sustainable Machining
.
31.
Stephenson
,
D. A.
,
Hughey
,
E.
, and
Hasham
,
A.
,
2019
, “
Air Flow and Chip Removal in Minimum Quantity Lubrication Drilling
,”
Procedia Manufacturing
,
34
(47th SME North American Manufacturing Research Conference, NAMRC 47, PA), pp.
335
342
. https://doi.org/10.1016/j.promfg.2019.06.171
32.
Rohit
,
J. N.
,
Surendra Kumar
,
K.
,
Sura Reddy
,
N.
,
Kuppan
,
P.
, and
Balan
,
A. S. S.
,
Computational Fluid Dynamics Analysis of MQL Spray Parameters and Its Influence on MQL Milling of SS304
,
Springer
,
Singapore
, pp.
45
78
.
33.
Yamamoto
,
K.
,
Alam
,
M. M.
,
Yasuhara
,
J.
, and
Aribowo
,
A.
,
2000
, “
Flow Through a Rotating Helical Pipe With Circular Cross-Section
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
213
220
. 10.1016/S0142-727X(99)00079-X
34.
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
,
Crowe
,
C. T.
, and
Tsuji
,
Y.
,
2011
,
Multiphase Flows With Droplets and Particles
,
CRC Press
,
Boca Raton, FL
.
35.
Gordon
,
R.
,
Bender
,
R.
, and
Herman
,
G. T.
,
1970
, “
Algebraic Reconstruction Techniques (ART) for Three-Dimensional Electron Microscopy and X-Ray Photography
,”
J. Theor. Biol.
,
29
(
3
), pp.
471
481
. 10.1016/0022-5193(70)90109-8
You do not currently have access to this content.