Abstract

The topic of sustainable machining has in recent times emerged as a significant and impactful area of research focus as it directly deals with environmental health and protection, economic growth and prosperity, and societal wellbeing with greater health and wellness. More specifically, sustainable machining at product, process, and system levels deals with reducing negative environmental impact, offering improved energy and resource efficiency, generating a minimum quantity of wastes, providing operational safety, and offering improved personal health. This paper summarizes recent efforts by the world research community in sustainable machining with a systematic approach for the analysis of machining processes that are broadly classified as sustainable, beginning with dry machining, and then near-dry (also known as minimum quantity lubrication (MQL)) and cryogenic machining processes. The paper also extends its analysis to a hybrid mode of sustainable machining that effectively combines cryogenic and MQL machining processes for improved productivity and machining performance. While a significant part of this paper presents experimental analysis, the progress being made in modeling and optimization has also been discussed in the paper. In particular, major challenges involved in model development for practical implementation, with a view to selecting optimum cutting conditions and cutting tool selection, are primarily discussed in the paper. The need for continued modeling efforts for achieving deployable optimized conditions for sustainable machining is highly recognized, and further research is required in numerous fronts integrating the various convergent disciplines such as materials, mechanics, computational sciences, economics, environmental sciences.

References

1.
US Department of Commerce
,
2009
.
How does Commerce Define Sustainable Manufacturing
.
2.
US EPA
,
2012
.
Sustainable Manufacturing
, https://www.epa.gov/sustainability/sustainable-manufacturing.
3.
NACFAM
,
2009
.
Sustainable Manufacturing
.
4.
Rachuri
,
S.
,
Sriram
,
R.
,
Narayanan
,
A.
,
Sarkar
,
P.
,
Lee
,
J.
,
Lyons
,
K.
, and
Kemmerer
,
S., 2010.
Sustainable Manufacturing: Metrics, Standards, and Infrastructure—NIST Workshop Report
,
National Institute of Standards and Technology (NIST)
,
Gaithersburg, MD
,
NIST Interagency/Internal report (NISTIR), 7683
.
5.
ASME
,
2011
.
Sustainable Products and Processes Strategic Plan
.
6.
ASME
,
2014
.
Sustainable Manufacturing: Preparing for a New Business Imperative, Open Research Forum (ORF-2), Report and Recommendations
.
7.
NSF
,
2014
, “Report on Sustainable Manufacturing Development Roadmap Workshop,”
T. E. Y.
Huang
,
M.
El-Halwagi
,
C.
Davidson
, and
M.
Eden
,
Cincinnati, OH
.
8.
Jayal
,
A.
,
Badurdeen
,
F.
,
Dillon
,
O.
, Jr
, and
Jawahir
,
I.
,
2010
, “
Sustainable Manufacturing: Modeling and Optimization Challenges at the Product, Process and System Levels
,”
CIRP J. Manuf. Sci. Technol.
,
2
(
3
), pp.
144
152
. 10.1016/j.cirpj.2010.03.006
9.
Jawahir
,
I. S.
,
Badurdeen
,
F.
, and
Rouch
,
K. E.
,
2013
, “
Innovation in Sustainable Manufacturing Education
”,
Proceeding of 11th Global Conference on Sustainable Manufacturing (GCSM)
G.
Seliger
, ed.,
Berlin, Germany
,
Sept. 23–25
, pp.
9
16
.
10.
Institute for Sustainable Manufacturing (ISM)
,
2014
,
Sustainable Manufacturing—A Business Perspective: A technology roadmap
.
11.
Carley
,
S.
,
Jasinowski
,
J.
,
Glassley
,
G.
,
Strahan
,
P.
,
Attari
,
S.
, and
Shackelford
,
S.
,
2014
,
Success Paths to Sustainable Manufacturing
,
School of Public and Environmental Affairs Indiana University
,
Bloomington, IN
.
12.
Wanigarathne
,
P.
,
Liew
,
J.
,
Wang
,
X.
,
Dillon
,
O.
, Jr
, and
Jawahir
,
I.
,
2004
, “
Assessment of Process Sustainability for Product Manufacture in Machining Operations
,”
Proceedings of the Global Conference on Sustainable Product Development and Life Cycle Engineering
,
Berlin, Germany
, pp.
305
312
.
13.
Lu
,
T.
,
2014
, “
A Metrics-Based Sustainability Assessment of Cryogenic Machining Using Modeling and Optimization of Process Performance
,” PhD thesis,
University of Kentucky
.
14.
Lu
,
T.
, and
Jawahir
,
I.
,
2015
, “
Metrics-Based Sustainability Evaluation of Cryogenic Machining
,”
Procedia CIRP
,
29
, pp.
520
525
. 10.1016/j.procir.2015.02.067
15.
Byers
,
J. P.
,
2006
,
Metalworking Fluids
,
CRC Press, Taylor and Francis Group
,
Boca Raton, FL
.
16.
Hong
,
S. Y.
,
2006
, “
Lubrication Mechanisms of LN2 in Ecological Cryogenic Machining
,”
Mach. Sci. Technol.
,
10
(
1
), pp.
133
155
. 10.1080/10910340500534324
17.
El Baradie
,
M.
,
1996
, “
Cutting Fluids: Part I. Characterisation
,”
J. Mater. Process. Technol.
,
56
(
1-4
), pp.
786
797
. 10.1016/0924-0136(95)01892-1
18.
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2012
, “
Environmentally Conscious Machining of Difficult-to-Machine Materials With Regard to Cutting Fluids
,”
Int. J. Mach. Tools Manuf.
,
57
, pp.
83
101
. 10.1016/j.ijmachtools.2012.02.002
19.
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S.
,
2014
, “
A Techno-Health Study of the Use of Cutting Fluids and Future Alternatives
,”
24th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM 2014)
,
San Antonio, TX
.
20.
Clapp
,
R. W.
,
Jacobs
,
M. M.
, and
Loechler
,
E. L.
,
2008
, “
Environmental and Occupational Causes of Cancer: new Evidence 2005-2007
,”
Reviews Environ. Health
,
23
(
1
), pp.
1
38
. 10.1515/REVEH.2008.23.1.1
21.
Malloy
,
E. J.
,
Miller
,
K. L.
, and
Eisen
,
E. A.
,
2007
, “
Rectal Cancer and Exposure to Metalworking Fluids in the Automobile Manufacturing Industry
,”
Occup. Environ. Med.
,
64
(
4
), pp.
244
249
. 10.1136/oem.2006.027300
22.
De Joode
,
B. V. W.
,
Bierman
,
E.
,
Brouwer
,
D.
,
Spithoven
,
J.
, and
Kromhout
,
H.
,
2005
, “
An Assessment of Dermal Exposure to Semi-Synthetic Metal Working Fluids by Different Methods to Group Workers for an Epidemiological Study on Dermatitis
,”
Occup. Environ. Medicine
,
62
(
9
), pp.
633
641
. 10.1136/oem.2004.015396
23.
Klocke
,
F.
, and
Eisenblätter
,
G.
,
1997
, “
Dry Cutting
,”
CIRP Ann.
,
46
(
2
), pp.
519
526
. 10.1016/S0007-8506(07)60877-4
24.
Brinksmeier
,
E.
,
Meyer
,
D.
,
Huesmann-Cordes
,
A.
, and
Herrmann
,
C.
,
2015
, “
Metalworking Fluids—Mechanisms and Performance
,”
CIRP Ann.
,
64
(
2
), pp.
605
628
. 10.1016/j.cirp.2015.05.003
25.
Jawahir
,
I. S.
,
Attia
,
H.
,
Biermann
,
D.
,
Duflou
,
J.
,
Klocke
,
F.
,
Meyer
,
D.
,
Newman
,
S.
,
Pusavec
,
F.
,
Putz
,
M.
, and
Rech
,
J.
,
2016
, “
Cryogenic Manufacturing Processes
,”
CIRP Ann.
,
65
(
2
), pp.
713
736
. 10.1016/j.cirp.2016.06.007
26.
Taylor
,
F. W.
,
1907
,
On the Art of Cutting Metals
, 2nd ed., Vol.
28
,
ASME
,
New York
.
27.
Cook
,
N. H.
,
1973
, “
Tool Wear and Tool Life
,”
ASME J. Eng. Ind.
,
95
(
4
), pp.
931
938
. 10.1115/1.3438271
28.
ANSI/ASME
,
1985
,
Tool-life Testing with Single-Point Turning Tools
,
American National Standard
,
New York
.
29.
Colding
,
B. N.
,
1959
, “
A Three-Dimensional, Tool-Life Equation—Machining Economics
,”
ASME J. Eng. Ind.
,
81
(
3
), pp.
239
249
. 10.1115/1.4008313
30.
Rubenstein
,
C.
,
1976
,
An Analysis of Tool Life Based on Flank-Face Wear—Part 2: Comparison of Theory With Experimental Observations
.
31.
Usui
,
E.
,
Shirakashi
,
T.
, and
Kitagawa
,
T.
,
1984
, “
Analytical Prediction of Cutting Tool Wear
,”
Wear
,
100
(
1–3
), pp.
129
151
. 10.1016/0043-1648(84)90010-3
32.
ISO
,
1993
,
3685, in: Tool-life Testing of Turning Tools
.
33.
Chandrasekaran
,
H.
, and
Johansson
,
J.
,
1994
, “
Chip Flow and Notch Wear Mechanisms During the Machining of High Austenitic Stainless Steels
,”
CIRP Ann.
,
43
(
1
), pp.
101
105
. 10.1016/S0007-8506(07)62174-X
34.
Venkatesh
,
V.
, and
Satchithanandam
,
M.
,
1980
, “
A Discussion on Tool Life Criteria and Total Failure Causes
,”
CIRP Ann.
,
29
(
1
), pp.
19
22
. 10.1016/S0007-8506(07)61288-8
35.
Reinhart
,
L. E.
,
1975
,
Effect of Chip Forming Devices on Tool Wear in Metal Cutting
.
36.
Jawahir
,
I. S.
,
1991
, “
An Investigation of Three-Dimensional Chip Flow in Machining of Steels With Grooved Chip Forming Tool Inserts
,”
Transactions NAMRI/SME
,
19
, pp.
222
231
.
37.
Worthington
,
B.
,
1976
, “
The Operation and Performance of a Groove-Type Chip Forming Device
,”
Int. J. Production Res.
,
14
(
5
), pp.
529
558
. 10.1080/00207547608956623
38.
Jawahir
,
I.
,
Li
,
P.
,
Gosh
,
R.
, and
Exner
,
E.
,
1995
, “
A New Parametric Approach for the Assessment of Comprehensive Tool Wear in Coated Grooved Tools
,”
CIRP Ann.
,
44
(
1
), pp.
49
54
. 10.1016/S0007-8506(07)62273-2
39.
Li
,
P.
,
Jawahir
,
I.
,
Fang
,
X.
, and
Exner
,
E.
,
1996
, “
Chip-groove Effects on Multiple Tool-Wear Parameters in Machining
,”
NAMRI SME
,
Ann Arbor, MI
,
May 21–23
, pp.
33
38
.
40.
Jawahir
,
I. S.
,
Fang
,
X. D.
,
Li
,
P. X.
, and
Ghosh
,
R.
,
1997
,
Method of Assessing Tool-Life in Grooved Tools
,
US Patent 5,689,062
.
41.
Jawahir
,
I.
,
Ghosh
,
R.
,
Fang
,
X.
, and
Li
,
P.
,
1995
, “
An Investigation of the Effects of Chip Flow on Tool-Wear in Machining With Complex Grooved Tools
,”
Wear
,
184
(
2
), pp.
145
154
. 10.1016/0043-1648(94)06572-1
42.
Ee
,
K.
,
Balaji
,
A.
,
Li
,
P.
, and
Jawahir
,
I.
,
2001
, “
Force Decomposition Model for Tool-Wear in Turning With Grooved Cutting Tools
,”
Wear
,
249
(
10–11
), pp.
985
994
. 10.1016/S0043-1648(01)00837-7
43.
Ghosh
,
R.
,
Redetzky
,
M.
,
Balaji
,
A.
, and
Jawahir
,
I.
,
1996
, “
The Equivalent Toolface (ET) Approach for Modeling Chip Curl in Machining With Grooved Tools
,”
Proceeding of CSME Forum 13th Symposium on Engineering Applications of Mechanics: Manufacturing Science and Engineering
,
McMaster University, Hamilton, Ontario, Canada
, pp.
702
711
.
44.
Ee
,
K.
,
Balaji
,
A.
, and
Jawahir
,
I.
,
2003
, “
Progressive Tool-Wear Mechanisms and Their Effects on Chip-Curl/Chip-Form in Machining With Grooved Tools: An Extended Application of the Equivalent Toolface (ET) Model
,”
Wear
,
255
(
7–12
), pp.
1404
1413
. 10.1016/S0043-1648(03)00112-1
45.
Ee
,
K.
,
Li
,
P.
,
Balaji
,
A.
,
Jawahir
,
I.
, and
Stevenson
,
R.
,
2006
, “
Performance-based Predictive Models and Optimization Methods for Turning Operations and Applications: Part 1—Tool Wear/Tool Life in Turning with Coated Grooved Tools
,”
J. Manuf. Processes
,
8
(
1
), pp.
54
66
. 10.1016/S1526-6125(06)70102-5
46.
Marksberry
,
P.
, and
Jawahir
,
I.
,
2008
, “
A Comprehensive Tool-Wear/Tool-Life Performance Model in the Evaluation of NDM (Near dry Machining) for Sustainable Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
48
(
7–8
), pp.
878
886
. 10.1016/j.ijmachtools.2007.11.006
47.
Ernst
,
H.
, and
Merchant
,
M. E.
,
1941
,
Chip Formation, Friction and Finish
,
Cincinnati Milling Machine Company
,
Cincinnati, OH
.
48.
Lee
,
E.
,
1951
, “
The Theory of Plasticity Applied to a Problem of Machining
,”
ASME J. Appl. Mech.
,
18
(
1
), p.
405
.
49.
Palmer
,
W.
, and
Oxley
,
P.
,
1959
, “
Mechanics of Orthogonal Machining
,”
Proceedings Ins. Mech. Eng.
,
173
(
1
), pp.
623
654
. 10.1243/PIME_PROC_1959_173_053_02
50.
Johnson
,
W.
,
1962
, “
Some Slip-Line Fields for Swaging or Expanding, Indenting, Extruding and Machining for Tools With Curved Dies
,”
Int. J. Mech. Sci.
,
4
(
4
), pp.
323
347
. 10.1016/S0020-7403(62)80022-8
51.
Oxley
,
P. L. B.
,
1962
, “
An Analysis for Orthogonal Cutting With Restricted Tool-Chip Contact
,”
Int. J. Mech. Sci.
,
4
(
2
), pp.
129
135
. 10.1016/S0020-7403(62)80035-6
52.
Jawahir
,
I. S.
, and
Oxley
,
P. L. B.
,
1988
, “
The Tool Restricted Contact Effect as a Major Influencing Factor in Chip Breaking: An Experimental Analysis
,”
CIRP Ann.
,
17
(
1
), pp.
121
126
. 10.1016/S0007-8506(07)61600-X
53.
Fang
,
N.
,
Jawahir
,
I. S.
, and
Oxley
,
P. L. B.
,
2001
, “
A Universal Slip-Line Model With Non-Unique Solutions for Machining With Curled Chip Formation and a Restricted Contact Tool
,”
Int. J. Mech. Sci.
,
43
(
2
), pp.
557
580
. 10.1016/S0020-7403(99)00117-4
54.
Oxley
,
P. L. B.
,
1989
,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood Publishers
,
New York
.
55.
Fang
,
N.
, and
Jawahir
,
I.
,
2002
, “
An Analytical Predictive Model and Experimental Validation for Machining With Grooved Tools Incorporating the Effects of Strains, Strain-Rates, and Temperatures
,”
CIRP Ann.
,
51
(
1
), pp.
83
86
. 10.1016/S0007-8506(07)61471-1
56.
Wang
,
X.
, and
Jawahir
,
I.
,
2007
, “
Recent Advances in Plasticity Applications in Metal Machining: Slip-Line Models for Machining With Rounded Cutting Edge Restricted Contact Grooved Tools
,”
Int. J. Mach. Mach. Mater.
,
2
(
3/4
), p.
347
. 10.1504/IJMMM.2007.015471
57.
Schoop
,
J.
,
Adeniji
,
D.
, and
Brown
,
I.
,
2019
, “
Computationally Efficient, Multi-Domain Hybrid Modeling of Surface Integrity in Machining and Related Thermomechanical Finishing Processes
,”
Procedia CIRP
,
82
(
1
), pp.
356
361
. 10.1016/j.procir.2019.03.225
58.
Okushima
,
K.
, and
Hitomi
,
K.
,
1964
, “
A Study of Economical Machining: an Analysis of the Maximum-Profit Cutting Speed
,”
Int. J. Production Res.
,
3
(
1
), pp.
73
78
. 10.1080/00207546408943046
59.
Armarego
,
E.
, and
Russell
,
J.
,
1966
, “
Maximum Profit Rate as a Criterion for the Selection of Machining Conditions
,”
Int. J. Mach. Tool Design Res.
,
6
(
1
), pp.
15
23
. 10.1016/0020-7357(66)90003-5
60.
Zdeblick
,
W. J.
,
De Vor
,
R.
, and
Kahles
,
J. F.
,
1981
, “
A Comprehensive Machining Cost Model and Optimization Technique
,”
CIRP Ann.
,
30
(
1
), pp.
405
408
. 10.1016/S0007-8506(07)60966-4
61.
Balaji
,
A.
,
Ghosh
,
R.
,
Fang
,
X.
,
Stevenson
,
R.
, and
Jawahir
,
I.
,
2006
, “
Performance-based Predictive Models and Optimization Methods for Turning Operations and Applications: Part 2—Assessment of Chip Forms/Chip Breakability
,”
J. Manuf. Processes
,
8
(
2
), pp.
144
158
. 10.1016/S1526-6125(06)80009-5
62.
Wang
,
X.
,
Da
,
Z.
,
Balaji
,
A.
, and
Jawahir
,
I.
,
2007
, “
Performance-based Predictive Models and Optimization Methods for Turning Operations and Applications: Part 3—Optimum Cutting Conditions and Selection of Cutting Tools
,”
J. Manuf. Processes
,
9
(
1
), pp.
61
74
. 10.1016/S1526-6125(07)70108-1
63.
Jawahir
,
I.
,
Balaji
,
A.
,
Rouch
,
K.
, and
Baker
,
J.
,
2003
, “
Towards Integration of Hybrid Models for Optimized Machining Performance in Intelligent Manufacturing Systems
,”
J. Mater. Process. Technol.
,
139
(
1–3
), pp.
488
498
. 10.1016/S0924-0136(03)00525-9
64.
Jawahir
,
I.
,
Qureshi
,
N.
, and
Arsecularatne
,
J.
,
1992
, “
On the Interrelationships of Some Machinability Parameters in Finish Turning with Cermet Chip Forming Tool Inserts
,”
Int. J. Mach. Tools Manuf.
,
32
(
5
), pp.
709
723
. 10.1016/0890-6955(92)90025-C
65.
Shaw
,
M. C.
,
2005
,
Metal Cutting Principles
,
Oxford University Press
,
New York
.
66.
Da
,
Z.
, and
Jawahir
,
I.
,
1998
, “
Optimal Chip Control in Turning Operations
,”
Proceedings of the International Seminar on Improving Machine Tool Performance
,
San Sebastian, Spain
,
July 6–8
, pp.
607
618
.
67.
Jawahir
,
I.
, and
Wang
,
X.
,
2007
, “
Development of Hybrid Predictive Models and Optimization Techniques for Machining Operations
,”
J. Mater. Process. Technol.
,
185
(
1–3
), pp.
46
59
. 10.1016/j.jmatprotec.2006.03.133
68.
Wang
,
X.
, and
Jawahir
,
I.
,
2005
, “
Optimization of Multi-Pass Turning Operations Using Genetic Algorithms for the Selection of Cutting Conditions and Cutting Tools with Tool-Wear Effect
,”
Int. J. Production Res.
,
43
(
17
), pp.
3543
3559
. 10.1080/13629390500124465
69.
Eskicioglu
,
H.
,
Nisli
,
M.
, and
Kilic
,
S.
,
1985
, “
An Application of Geometric Programming to Single-Pass Turning Operations
,”
Proceedings of the Twenty-Fifth International Machine Tool Design and Research Conference
,
Birmingham, UK
,
Apr. 22–24
, pp.
149
157
.
70.
Armarego
,
E.
,
Kee
,
P.
, and
Smith
,
A.
,
1986
, “
Computer Aided Optimization of Machining Conditions in Single Pass Turning Operations
,”
Third International Conference on Manufacturing Engineering 1986: Technology for Manufacturing Growth; preprints of Papers
,
Newcastle, NSW, Australia
,
Aug. 4–6
, p.
36
.
71.
Arsecularatne
,
J. A.
,
Hinduja
,
S.
, and
Barrow
,
G.
,
1992
, “
Optimum Cutting Conditions for Turned Components, Proceedings of the Institution of Mechanical Engineers
,”
Part B: J. Eng. Manuf.
,
206
(
1
), pp.
15
31
. 10.1243/PIME_PROC_1992_206_052_02
72.
Meng
,
Q.
,
Arsecularatne
,
J.
, and
Mathew
,
P.
,
2000
, “
Calculation of Optimum Cutting Conditions for Turning Operations Using a Machining Theory
,”
Int. J. Mach. Tools Manuf.
,
40
(
12
), pp.
1709
1733
. 10.1016/S0890-6955(00)00026-2
73.
El-Gizawy
,
A. S.
, and
El-Sayed
,
J. J.
,
2002
, “
A Multiple Objective Based Strategy for Process Design of Machining Operations
,”
Int. J. Comput. Integr. Manuf.
,
15
(
4
), pp.
353
360
. 10.1080/09511920110059089
74.
Wang
,
J.
,
Kuriyagawa
,
T.
,
Wei
,
X.
, and
Guo
,
D.
,
2002
, “
Optimization of Cutting Conditions for Single Pass Turning Operations Using a Deterministic Approach
,”
Int. J. Mach. Tools Manuf.
,
42
(
9
), pp.
1023
1033
. 10.1016/S0890-6955(02)00037-8
75.
Armarego
,
E.
, and
Ostafiev
,
D.
,
2003
, “
Multi-Constraint Optimization and Cutting Conditions Selection in Process Planning Turning Operations with Modern Chip Breaker Tools, Proceedings of the Institution of Mechanical Engineers
,”
Part B: J. Eng. Manuf.
,
217
(
1
), pp.
57
71
. 10.1243/095440503762502288
76.
Da
,
Z.
,
Sadler
,
J.
, and
Jawahir
,
I.
,
1997
, “
Predicting Optimum Cutting Conditions for Turning Operations at Varying Tool-Wear States
,”
Transactions NAMRI SME
,
Lincoln, NE
,
May 21–23
, pp.
75
80
.
77.
Da
,
Z.
,
Sadler
,
J.
, and
Jawahir
,
I.
,
1998
,
A New Performance-Based Criterion for Optimum Cutting Conditions and Cuffing Tool Selection in Finish Turning
,
SME Technical Paper
.
78.
Sadler
,
J. P.
,
Jawahir
,
I. S.
,
Da
,
Z.
, and
Lee
,
S. S.
,
1998
,
Method of Predicting Optimum Machining Conditions
,
US Patent 5,801,963
.
79.
Sadler
,
J. P.
,
Jawahir
,
I. S.
,
Da
,
Z.
, and
Lee
,
S. S.
,
1999
,
Optimization of Machining with Progressively Worn Cutting Tools
,
US Patent 5,903,474
.
80.
Ermer
,
D.
, and
Kromodihardjo
,
S.
,
1981
,
Optimization of Multipass Turning With Constraints
.
81.
Agapiou
,
J.
,
1992
,
The Optimization of Machining Operations Based on a Combined Criterion, Part 1: The Use of Combined Objectives in Single-Pass Operations
.
82.
Mesquita
,
R.
,
Krasteva
,
E.
, and
Doytchinov
,
S.
,
1995
, “
Computer-Aided Selection of Optimum Machining Parameters in Multipass Turning
,”
Int. J. Adv. Manuf. Technol.
,
10
(
1
), pp.
19
26
. 10.1007/BF01184274
83.
Alberti
,
N.
, and
Perrone
,
G.
,
1999
, “
Multipass Machining Optimization by Using Fuzzy Possibilistic Programming and Genetic Algorithms, Proceedings of the Institution of Mechanical Engineers
,”
Part B: J. Eng. Manuf.
,
213
(
3
), pp.
261
273
. 10.1243/0954405991516741
84.
Al-Ahmari
,
A.
,
2001
, “
Mathematical Model for Determining Machining Parameters in Multipass Turning Operations With Constraints
,”
Int. J. Prod. Res.
,
39
(
15
), pp.
3367
3376
. 10.1080/00207540110052562
85.
Onwubolu
,
G.
, and
Kumalo
,
T.
,
2001
, “
Optimization of Multipass Turning Operations With Genetic Algorithms
,”
Int. J. Prod. Res.
,
39
(
16
), pp.
3727
3745
. 10.1080/00207540110056153
86.
Vijayakumar
,
K.
,
Prabhaharan
,
G.
,
Asokan
,
P.
, and
Saravanan
,
R.
,
2003
, “
Optimization of Multi-Pass Turning Operations Using Ant Colony System
,”
Int. J. Mach. Tools Manuf.
,
43
(
15
), pp.
1633
1639
. 10.1016/S0890-6955(03)00081-6
87.
Chen
,
M.-C.
,
2004
, “
Optimizing Machining Economics Models of Turning Operations Using the Scatter Search Approach
,”
Int. J. Prod. Res.
,
42
(
13
), pp.
2611
2625
. 10.1080/00207540410001666251
88.
Wang
,
X.
,
Da
,
Z.
,
Balaji
,
A.
, and
Jawahir
,
I.
,
2002
, “
Performance-Based Optimal Selection of Cutting Conditions and Cutting Tools in Multipass Turning Operations Using Genetic Algorithms
,”
Int. J. Prod. Res.
,
40
(
9
), pp.
2053
2065
. 10.1080/00207540210128279
89.
Klein
,
E.
,
1974
, “
Tool Wear and Cooling Action: The Influence of Mist Spraying in the Machining of Aluminum
,”
Maschienenmarkt
,
80
, pp.
87
91
.
90.
Klein
,
E.
,
1974
, “
The Field of Application of Mist Spraying of Cutting Fluids With Practical Examples
,”
Maschienenmarkt
,
80
, pp.
105
110
.
91.
Um
,
J.-Y.
,
Chow
,
L. C.
, and
Jawahir
,
I. S.
,
1995
, “
Experimental Investigation of the Application of the Spray Cooling Method in Stainless Steel Machining
,”
ASME MED Manufacturing Science and Engineering
,
2
(
1
), pp.
165
178
.
92.
Brinksmeier
,
E.
,
Walter
,
A.
,
Jansscn
,
R.
, and
Diersen
,
P.
,
1999
, “
Aspects of Cooling Lubrication Reduction in Machining Advanced Materials, Proceedings of the Institution of Mechanical Engineers
,”
Part B: J. Eng. Manuf.
,
213
(
8
), pp.
769
778
. 10.1243/0954405991517209
93.
Weinert
,
K.
,
Inasaki
,
I.
,
Sutherland
,
J. W.
, and
Wakabayashi
,
T.
,
2004
, “
Dry Machining and Minimum Quantity Lubrication
,”
CIRP Annals—Manuf. Technol.
,
53
(
2
), pp.
511
537
. 10.1016/S0007-8506(07)60027-4
94.
Suda
,
S.
,
Wakabayashi
,
T.
,
Inasaki
,
I.
, and
Yokota
,
H.
,
2004
, “
Multifunctional Application of a Synthetic Ester to Machine Tool Lubrication Based on MQL Machining Lubricants
,”
CIRP Annals—Manuf. Technol.
,
53
(
1
), pp.
61
64
. 10.1016/S0007-8506(07)60645-3
95.
Lopes
,
J. C.
,
Garcia
,
M. V.
,
Valentim
,
M.
,
Javaroni
,
R. L.
,
Ribeiro
,
F. S. F.
,
de Angelo Sanchez
,
L. E.
,
de Mello
,
H. J.
,
Aguiar
,
P. R.
, and
Bianchi
,
E. C.
,
2019
, “
Grinding Performance Using Variants of the MQL Technique: MQL With Cooled Air and MQL Simultaneous to the Wheel Cleaning jet
,”
Int. J. Adv. Manuf. Technol.
,
105
(
10
), pp.
4429
4442
. 10.1007/s00170-019-04574-5
96.
Kamata
,
Y.
,
Obikawa
,
T.
, and
Shinozuka
,
J.
,
2004
,
Analysis of Mist Flow in MQL Cutting
,
Department of Mechanical Engineering, Tokyo Institute of Technology
,
Meguro, Tokyo, Japan
, pp.
339
344
.
97.
Ohtake
,
H.
,
Tanaki
,
T.
, and
Koizumi
,
Y.
Study on Boiling Heat Transfer and Critical Heat Flux in Mist Cooling (Effect of Droplet Size on Heat Transfer Characteristics)
,
Department of Mechanical Engineering, Kogakuin University
,
Japan
, pp.
691
698
.
98.
Kim
,
S. H.
,
Lee
,
S. W.
,
Han
,
S.
, and
Kim
,
S. M.
,
2019
, “
Numerical Investigation of Thermal Characteristics of Spray Cooling With Minimum Quantity Lubrication in Milling Process
,”
Appl. Math. Model.
,
65
(
1
), pp.
137
147
. 10.1016/j.apm.2018.08.011
99.
Redetzky
,
M.
,
Balaji
,
A.
, and
Jawahir
,
I.
,
1999
, “
Predictive Modeling of Cutting Forces and Chip Flow in Machining with Nose Radius Tools
,”
Proceedings 2nd CIRP International Workshop on Modeling of Machining Operations
,
Nantes, France
,
July 3–5
, pp.
160
180
.
100.
Wanigarathne
,
P. C.
,
Ee
,
K. C.
, and
Jawahir
,
I. S.
,
2003
, “
Near-dry Machining for Environmentally Benign Manufacturing—A Comparison of Machining Performance with Flood Cooling and Dry Machining
,”
Design Manuf. Sustainable Dev.
,
2003
(
1
), pp.
39
48
.
101.
Puvanesan
,
M.
,
Rahman
,
M. M.
,
Najiha
,
M. S.
, and
Kadirgama
,
K.
,
2014
, “
Experimental Investigation of Minimum Quantity Lubrication on Tool Wear in Aluminum Alloy 6061-T6 Using Different Cutting Tools
,”
Int. J. Automotive Mech. Eng.
,
9
(
1
), pp.
1511
1524
. 10.15282/ijame.9.2013.5.0127
102.
Rahman
,
M.
,
Senthil Kumar
,
A.
, and
Manzoor Ul
,
S.
,
2001
, “
Evaluation of Minimal Quantities of Lubricant in End Milling
,”
Int. J. Adv. Manuf. Technol.
,
18
(
4
), pp.
235
241
. 10.1007/s001700170063
103.
Rahman
,
M.
,
Senthil Kumar
,
A.
, and
Salam
,
M. U.
,
2002
, “
Experimental Evaluation on the Effect of Minimal Quantities of Lubricant in Milling
,”
Int. J. Mach. Tools Manuf.
,
42
(
5
), pp.
539
547
. 10.1016/S0890-6955(01)00160-2
104.
Dhar
,
N. R.
,
Ahmed
,
M. T.
, and
Islam
,
S.
,
2007
, “
An Experimental Investigation on Effect of Minimum Quantity Lubrication in Machining AISI 1040 Steel
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
748
753
. 10.1016/j.ijmachtools.2006.09.+999017
105.
Dhar
,
N. R.
,
Kamruzzaman
,
M.
, and
Ahmed
,
M.
,
2006
, “
Effect of Minimum Quantity Lubrication (MQL) on Tool Wear and Surface Roughness in Turning AISI-4340 Steel
,”
J. Mater. Process. Technol.
,
172
(
2
), pp.
299
304
. 10.1016/j.jmatprotec.2005.09.022
106.
Itoigawa
,
F.
,
Childs
,
T. H. C.
,
Nakamura
,
T.
, and
Belluco
,
W.
,
2006
, “
Effects and Mechanisms in Minimal Quantity Lubrication Machining of an Aluminum Alloy
,”
Wear
,
260
(
3
), pp.
339
344
. 10.1016/j.wear.2005.03.035
107.
Attanasio
,
A.
,
Gelfi
,
M.
,
Giardini
,
C.
, and
Remino
,
C.
,
2006
, “
Minimal Quantity Lubrication in Turning: Effect on Tool Wear
,”
Wear
,
260
(
3
), pp.
333
338
. 10.1016/j.wear.2005.04.024
108.
Behera
,
B. C.
,
Alemayehu
,
H.
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2017
, “
A Comparative Study of Recent Lubri-Coolant Strategies for Turning of Ni-Based Superalloy
,”
J. Manuf. Processes
,
30
(
1
), pp.
541
552
. 10.1016/j.jmapro.2017.10.027
109.
Zhang
,
S.
,
Li
,
J. F.
, and
Wang
,
Y. W.
,
2012
, “
Tool Life and Cutting Forces in end Milling Inconel 718 Under dry and Minimum Quantity Cooling Lubrication Cutting Conditions
,”
J. Cleaner Prod.
,
32
(
1
), pp.
81
87
. 10.1016/j.jclepro.2012.03.014
110.
Pusavec
,
F.
,
Hamdi
,
H.
,
Kopac
,
J.
, and
Jawahir
,
I.
,
2011
, “
Surface Integrity in Cryogenic Machining of Nickel Based Alloy—Inconel 718
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
773
783
. 10.1016/j.jmatprotec.2010.12.013
111.
Pusavec
,
F.
,
Deshpande
,
A.
,
Yang
,
S.
,
M'Saoubi
,
R.
,
Kopac
,
J.
,
Dillon
,
O. W.
, Jr
, and
Jawahir
,
I.
,
2015
, “
Sustainable Machining of High Temperature Nickel Alloy–Inconel 718: Part 2–Chip Breakability and Optimization
,”
J. Cleaner Prod.
,
87
(
1
), pp.
941
952
. 10.1016/j.jclepro.2014.10.085
112.
Li
,
K. M.
, and
Liang
,
S. Y.
,
2007
, “
Performance Profiling of Minimum Quantity Lubrication in Machining
,”
Int. J. Adv. Manuf. Technol.
,
35
(
3-4
), pp.
226
233
. 10.1007/s00170-006-0713-1
113.
Ji
,
X.
,
Li
,
B.
,
Zhang
,
X.
, and
Liang
,
S. Y.
,
2014
, “
The Effects of Minimum Quantity Lubrication (MQL) on Machining Force, Temperature, and Residual Stress
,”
Int. J. Precis. Eng. Manuf.
,
15
(
11
), pp.
2443
2451
. 10.1007/s12541-014-0612-6
114.
Ji
,
X.
,
Li
,
B. Z.
, and
Liang
,
S. Y.
,
2018
, “
Analysis of Thermal and Mechanical Effects on Residual Stress in Minimum Quantity Lubrication (MQL) Machining
,”
J. Mech.
,
34
(
1
), pp.
41
46
. 10.1017/jmech.2016.14
115.
Priarone
,
P. C.
,
Robiglio
,
M.
,
Settineri
,
L.
, and
Tebaldo
,
V.
,
2016
, “
Modelling of Specific Energy Requirements in Machining as a Function of Tool and Lubricoolant Usage
,”
CIRP Annals—Manuf. Technol.
,
65
(
1
), pp.
25
28
. 10.1016/j.cirp.2016.04.108
116.
Mia
,
M.
,
Bashir
,
M. A.
,
Khan
,
M. A.
, and
Dhar
,
N. R.
,
2017
, “
Optimization of MQL Flow Rate for Minimum Cutting Force and Surface Roughness in end Milling of Hardened Steel (HRC 40)
,”
Int. J. Adv. Manuf. Technol.
,
89
(
1–4
), pp.
675
690
. 10.1007/s00170-016-9080-8
117.
Uysal
,
A.
, and
Jawahir
,
I. S.
,
2019
, “
Validation of the Slip-Line Model for Serrated Chip Formation in Orthogonal Turning Under dry and MQL Conditions
,”
Procedia CIRP
,
82
(
1
), pp.
124
129
. 10.1016/j.procir.2019.04.006
118.
Tai
,
B. L.
,
Jessop
,
A. J.
,
Stephenson
,
D. A.
, and
Shih
,
A. J.
,
2012
, “
Workpiece Thermal Distortion in Minimum Quantity Lubrication Deep Hole Drilling-Finite Element Modeling and Experimental Validation
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011008
. 10.1115/1.4005432
119.
Tai
,
B. L.
,
Stephenson
,
D. A.
, and
Shih
,
A. J.
,
2013
, “
Workpiece Temperature During Deep-Hole Drilling of Cast Iron Using High air Pressure Minimum Quantity Lubrication
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031019
. 10.1115/1.4024036
120.
Biermann
,
D.
, and
Iovkov
,
I.
,
2012
, “
Deep Hole Drilling Using Twist Drills and MQL
,”
WT Werkstattstechnik
,
102
(
1
), pp.
324
328
. 10.1016/j.procir.2012.07.043
121.
Biermann
,
D.
, and
Iovkov
,
I.
,
2015
, “
Investigations on the Formation of Straightness Deviation in MQL Deep-Hole Drilling of Thin-Walled Aluminium Components: Experimental and Simulation-Based Analysis of Thermomechanical Effects in Deep-Hole Drilling Using Single-lip Drills and Twist Drills
,”
Prod. Eng. Res. Devel.
,
9
(
4
), pp.
527
535
. 10.1007/s11740-015-0632-9
122.
Scurlock
,
R.
,
1990
, “
A Matter of Degrees: A Brief History of Cryogenics
,”
Cryogenics
,
30
(
6
), pp.
483
500
. 10.1016/0011-2275(90)90048-H
123.
Gunston
,
B.
, and
Gunston
,
B.
,
2009
,
The Cambridge Aerospace Dictionary
,
Cambridge University Press
,
Cambridge, UK
.
124.
Kaynak
,
Y.
, and
Gharibi
,
A.
,
2018
, “
Progressive Tool Wear in Cryogenic Machining: The Effect of Liquid Nitrogen and Carbon Dioxide
,”
J. Manuf. Mater. Processing
,
2
(
2
), p.
31
. 10.3390/jmmp2020031
125.
Tahmasebi
,
E.
,
Albertelli
,
P.
,
Lucchini
,
T.
,
Monno
,
M.
, and
Mussi
,
V.
,
2019
, “
CFD and Experimental Analysis of the Coolant Flow in Cryogenic Milling
,”
Int. J. Mach. Tools Manuf.
,
140
(
1
), pp.
20
33
. 10.1016/j.ijmachtools.2019.02.003
126.
Pu
,
Z.
,
Outeiro
,
J.
,
Batista
,
A.
,
Dillon
,
O.
, Jr
,
Puleo
,
D.
, and
Jawahir
,
I. S.
,
2012
, “
Enhanced Surface Integrity of AZ31B Mg Alloy by Cryogenic Machining Towards Improved Functional Performance of Machined Components
,”
Int. J. Mach. Tools Manuf.
,
56
(
1
), pp.
17
27
. 10.1016/j.ijmachtools.2011.12.006
127.
Lu
,
T.
,
Kudaravalli
,
R.
, and
Georgiou
,
G.
,
2018
, “
Cryogenic Machining Through the Spindle and Tool for Improved Machining Process Performance and Sustainability: Pt. I, System Design
,”
Procedia Manuf.
,
21
(
1
), pp.
266
272
. 10.1016/j.promfg.2018.02.120
128.
Hong
,
S. Y.
, and
Zhao
,
Z.
,
1999
, “
Thermal Aspects, Material Considerations and Cooling Strategies in Cryogenic Machining
,”
Clean Prod. Processes
,
1
(
2
), pp.
107
116
. 10.1007/s100980050016
129.
Kaynak
,
Y.
,
2014
, “
Evaluation of Machining Performance in Cryogenic Machining of Inconel 718 and Comparison with dry and MQL Machining
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
919
933
. 10.1007/s00170-014-5683-0
130.
Schoop
,
J.
,
Sales
,
W. F.
, and
Jawahir
,
I.
,
2017
, “
High Speed Cryogenic Finish Machining of Ti-6Al4V with Polycrystalline Diamond Tools
,”
J. Mater. Process. Technol.
,
250
(
1
), pp.
1
8
. 10.1016/j.jmatprotec.2017.07.002
131.
Shokrani
,
A.
,
Dhokia
,
V.
,
Munoz-Escalona
,
P.
, and
Newman
,
S.
,
2013
, “
State-of-the-art Cryogenic Machining and Processing
,”
Int. J. Comput. Integr. Manuf.
,
26
(
7
), pp.
1
33
. 10.1080/0951192x.2012.749531
132.
Sales
,
W. F.
,
Schoop
,
J.
, and
Jawahir
,
I.
,
2017
, “
Tribological Behavior of PCD Tools During Superfinishing Turning of the Ti6Al4V Alloy Using Cryogenic, Hybrid and Flood as Lubri-Coolant Environments
,”
Tribol. Int.
,
114
(
1
), pp.
109
120
. 10.1016/j.triboint.2017.03.038
133.
Kaynak
,
Y.
, and
Gharibi
,
A.
,
2019
, “
Cryogenic Machining of Titanium Ti-5553 Alloy
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041012
. 10.1115/1.4042605
134.
Kaynak
,
Y.
,
Karaca
,
H. E.
,
Noebe
,
R. D.
, and
Jawahir
,
I. S.
,
2013
, “
Tool-wear Analysis in Cryogenic Machining of NiTi Shape Memory Alloys: A Comparison of Tool-Wear Performance With dry and MQL Machining
,”
Wear
,
306
(
1–2
), pp.
51
63
. 10.1016/j.wear.2013.05.011
135.
Ghosh
,
R.
,
Zurecki
,
Z.
, and
Frey
,
J. H.
,
2003
, “
Cryogenic Machining With Brittle Tools and Effects on Tool Life
,”
Proceedings of ASME IMECE
,
Washington, DC
,
Nov. 15–21
.
136.
Kaynak
,
Y.
,
Lu
,
T.
, and
Jawahir
,
I. S.
,
2014
, “
Cryogenic Machining-Induced Surface Integrity: A Review and Comparison With Dry,MQL, and Flood-Cooled Machining
,”
Mach. Sci. Technol.: An Int. J.
,
18
(
2
), pp.
149
198
. 10.1080/10910344.2014.897836
137.
Umbrello
,
D.
,
Micari
,
F.
, and
Jawahir
,
I.
,
2012
, “
The Effects of Cryogenic Cooling on Surface Integrity in Hard Machining: A Comparison With Dry Machining
,”
CIRP Ann.
,
61
(
1
), pp.
103
106
. 10.1016/j.cirp.2012.03.052
138.
Toth
,
L. S.
, and
Gu
,
C.
,
2014
, “
Ultrafine-Grain Metals by Severe Plastic Deformation
,”
Mater. Charact.
,
92
(
1
), pp.
1
14
. 10.1016/j.matchar.2014.02.003
139.
Doherty
,
R.
,
Hughes
,
D.
,
Humphreys
,
F.
,
Jonas
,
J.
,
Jensen
,
D. J.
,
Kassner
,
M.
,
King
,
W.
,
McNelley
,
T.
,
McQueen
,
H.
, and
Rollett
,
A.
,
1997
, “
Current Issues in Recrystallization: A Review
,”
Mater. Sci. Eng. A
,
238
(
2
), pp.
219
274
. 10.1016/S0921-5093(97)00424-3
140.
Ulutan
,
D.
, and
Ozel
,
T.
,
2011
, “
Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review
,”
Int. J. Mach. Tool Manu.
,
51
(
3
), pp.
250
280
. 10.1016/j.ijmachtools.2010.11.003
141.
Jawahir
,
I.
,
Kaynak
,
Y.
, and
Lu
,
T.
,
2014
, “
The Impact of Novel Material Processing Methods on Component Quality, Life and Performance
,”
Procedia CIRP
,
22
(
1
), pp.
33
44
. 10.1016/j.procir.2014.09.001
142.
Meyers
,
M. A.
, and
Chawla
,
K. K.
,
2009
,
Mechanical Behavior of Materials
,
Cambridge University Press
,
Cambridge, UK
.
143.
O’Sullivan
,
D.
, and
Cotterell
,
M.
,
2002
, “
Machinability of Austenitic Stainless Steel SS303
,”
J. Mater. Process. Technol.
,
124
(
1–2
), pp.
153
159
. 10.1016/S0924-0136(02)00197-8
144.
Hong
,
S. Y.
, and
Broomer
,
M.
,
2000
, “
Economical and Ecological Cryogenic Machining of AISI 304 Austenitic Stainless Steel
,”
Clean Prod. Processes.
,
2
(
3
), pp.
157
66
. 10.1007/s100980000073
145.
Duerig
,
T.
,
Pelton
,
A.
, and
Stockel
,
D.
,
1999
,
An Overview of Nitinol Medical Applications
, Vol.
273–275
,
Materials Science and Engineering: A
, pp.
149
160
.
146.
Thierry
,
B.
,
Tabrizian
,
M.
,
Trepanier
,
C.
,
Savadogo
,
O.
, and
Yahia
,
L. H.
,
2000
, “
Effect of Surface Treatment and Sterilization Processes on the Corrosion Behavior of NiTi Shape Memory Alloy
,”
J. Biomed. Mater. Res.
,
51
(
4
), pp.
685
693
. 10.1002/1097-4636(20000915)51:4<685::AID-JBM17>3.0.CO;2-S
147.
Yang
,
S.
,
2012
, “
Cryogenic Burnishing of Co-Cr-Mo Biomedical Alloy for Enhanced Surface Integrity and Improved Wear Performance
,” PhD dissertations,
University of Kentucky
.
148.
Yang
,
S.
,
Dillon
,
O. W.
, Jr
,
Puleo
,
D. A.
, and
Jawahir
,
I. S.
,
2013
, “
Effect of Cryogenic Burnishing on Surface Integrity Modifications of Co-Cr-Mo Biomedical Alloy
,”
J. Biomedical Mater. Res. Part B: Appl. Biomaterials
,
101
(
1
), pp.
139
152
. 10.1002/jbm.b.32827
149.
Huang
,
B.
,
Kaynak
,
Y.
,
Arvin
,
C.
, and
Jawahir
,
I.
,
2014
, “
Improved Surface Integrity From Cryogenic Machining of Al 7050-T7451 Alloy with Ultra-Fine Grained Structure
,”
17th International Conference on Advances in Materials and Processing Technologies (AMPT 2014)
,
Dubai, United Arab Emirates
,
Nov. 13–15
.
150.
Pu
,
Z.
,
Song
,
G.-L.
,
Yang
,
S.
,
Dillon
,
O.
,
Puleo
,
D.
, and
Jawahir
,
I.
,
2011
,
Cryogenic Burnishing of AZ31B Mg Alloy for Enhanced Corrosion Resistance
,
Magnesium Technology 2011
,
Cham, Switzerland, Springer
, pp.
513
518
.
151.
Rotella
,
G.
,
Dillon
,
O.
,
Umbrello
,
D.
,
Settineri
,
L.
, and
Jawahir
,
I.
,
2014
, “
The Effects of Cooling Conditions on Surface Integrity in Machining of Ti6Al4V Alloy
,”
Int. J. Adv. Manuf. Technol.
,
71
(
1–4
), pp.
47
55
. 10.1007/s00170-013-5477-9
152.
Arrazola
,
P.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
,
I.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP Ann.-Manuf. Technol.
,
62
(
2
), pp.
695
718
. 10.1016/j.cirp.2013.05.006
153.
Caudill
,
J.
,
Schoop
,
J.
, and
Jawahir
,
I.
,
2019
, “
Numerical Modeling of Cutting Forces and Temperature Distribution in High Speed Cryogenic and Flood-Cooled Milling of Ti-6Al-4V
,”
Procedia CIRP
,
82
(
1
), pp.
83
88
. 10.1016/j.procir.2019.04.055
154.
Pusavec
,
F.
,
Lu
,
T.
,
Courbon
,
C.
,
Rech
,
J.
,
Aljancic
,
U.
,
Kopac
,
J.
, and
Jawahir
,
I.
,
2016
, “
Analysis of the Influence of Nitrogen Phase and Surface Heat Transfer Coefficient on Cryogenic Machining Performance
,”
J. Mater. Process. Technol.
,
233
(
1
), pp.
19
28
. 10.1016/j.jmatprotec.2016.02.003
155.
Pu
,
Z.
,
Umbrello
,
D.
,
Puleo
,
D.
,
Dillon
,
O.
, Jr
,
Lu
,
T.
, and
Jawahir
,
I.
,
2013
, “
Finite Element Modeling of Microstructural Changes in Dry and Cryogenic Machining of AZ31B Magnesium Alloy for Enhanced Corrosion Resistance
,”
Proc. NAMRI/SME
,
16
(
2
), pp.
335
343
. 10.1016/j.jmapro.2014.02.002
156.
Pu
,
Z.
,
Umbrello
,
D.
,
Dillon
,
O.
, Jr
, and
Jawahir
,
I.
,
2014
, “
Finite Element Simulation of Residual Stresses in Cryogenic Machining of AZ31B Mg Alloy
,”
Procedia CIRP
,
13
(
1
), pp.
282
287
. 10.1016/j.procir.2014.04.048
157.
Jawahir
,
I.
,
Puleo
,
D.
, and
Schoop
,
J.
,
2016
, “
Cryogenic Machining of Biomedical Implant Materials for Improved Functional Performance, Life and Sustainability
,”
Procedia CIRP
,
46
(
1
), pp.
7
14
. 10.1016/j.procir.2016.04.133
158.
Hanenkamp
,
N.
,
Amon
,
S.
, and
Gross
,
D.
,
2018
, “
Hybrid Supply System for Conventional and CO2/MQL-Based Cryogenic Cooling
,”
Procedia CIRP
,
77
(
1
), pp.
219
222
. 10.1016/j.procir.2018.08.293
159.
Pereira
,
O.
,
Rodríguez
,
A.
,
Fernández-Abia
,
A.
,
Barreiro
,
J.
, and
de Lacalle
,
L. L.
,
2015
, “
The Use of Hybrid CO2+MQL in Machining Operations
,”
Procedia Eng.
,
132
(
1
), pp.
492
499
. 10.1016/j.proeng.2015.12.524
160.
Cordes
,
S.
,
Hübner
,
F.
, and
Schaarschmidt
,
T.
,
2014
, “
Next Generation High Performance Cutting by Use of Carbon Dioxide as Cryogenics
,”
Procedia Cirp
,
14
(
1
), pp.
401
405
. 10.1016/j.procir.2014.03.091
161.
Iturbe
,
A.
,
Hormaetxe
,
E.
,
Garay
,
A.
, and
Arrazola
,
P.
,
2016
, “
Surface Integrity Analysis When Machining Inconel 718 With Conventional and Cryogenic Cooling
,”
Procedia CIRP
,
45
(
1
), pp.
67
70
. 10.1016/j.procir.2016.02.095
162.
Damir
,
A.
,
Shi
,
B.
, and
Attia
,
M. H.
,
2019
, “
Flow Characteristics of Optimized Hybrid Cryogenic-Minimum Quantity Lubrication Cooling in Machining of Aerospace Materials
,”
CIRP Annals.
,
68
(
1
), pp.
77
80
. 10.1016/j.cirp.2019.04.047
163.
Stephenson
,
D.
,
Skerlos
,
S. J.
,
King
,
A. S.
, and
Supekar
,
S. D.
,
2014
, “
Rough Turning Inconel 750 With Supercritical CO2-Based Minimum Quantity Lubrication
,”
J. Mater. Process. Technol.
,
214
(
3
), pp.
673
680
. 10.1016/j.jmatprotec.2013.10.003
164.
MacLean
,
D. J.
,
Hayes
,
K. F.
,
Barnard
,
T.
,
Hull
,
T.
,
Park
,
Y. E.
, and
Skerlos
,
S. J.
,
2009
, “
Impact of Supercritical Carbon Dioxide Metalworking Fluids on Tool Life in Turning of Sintered Steel and Milling of Compacted Graphite Iron
,”
ASME IMCE
,
Lake Buena Vista, FL
,
Nov. 13–19
, American Society of Mechanical Engineers Digital Collection, pp.
43
48
.
165.
Pereira
,
O.
,
Rodríguez
,
A.
,
Barreiro
,
J.
,
Fernández-Abia
,
A. I.
, and
de Lacalle
,
L. N. L.
,
2017
, “
Nozzle Design for Combined use of MQL and Cryogenic gas in Machining
,”
Int. J. Precision Eng. Manuf.-Green Technol.
,
4
(
1
), pp.
87
95
. 10.1007/s40684-017-0012-3
166.
Pereira
,
O.
,
Urbikain
,
G.
,
Rodríguez
,
A.
,
Fernández-Valdivielso
,
A.
,
Calleja
,
A.
,
Ayesta
,
I.
, and
de Lacalle
,
L. N. L.
,
2017
, “
Internal Cryolubrication Approach for Inconel 718 Milling
,”
Procedia Manuf.
,
13
(
1
), pp.
89
93
. 10.1016/j.promfg.2017.09.013
167.
Tascioglu
,
E.
,
Gharibi
,
A.
, and
Kaynak
,
Y.
,
2019
, “
High Speed Machining of Near-Beta Titanium Ti-5553 Alloy Under Various Cooling and Lubrication Conditions
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
4257
4271
. 10.1007/s00170-019-03291-3
168.
Kaynak
,
Y.
,
Karaca
,
H. E.
,
Noebe
,
R. D.
, and
Jawahir
,
I.
,
2015
, “
The Effect of Active Phase of the Work Material on Machining Performance of a NiTi Shape Memory Alloy
,”
Metallurgical Mater. Transactions A
,
46
(
6
), pp.
2625
2636
. 10.1007/s11661-015-2828-1
169.
Klocke
,
F.
,
Lung
,
D.
,
Arft
,
M.
,
Priarone
,
P. C.
, and
Settineri
,
L.
,
2013
, “
On High-Speed Turning of a Third-Generation Gamma Titanium Aluminide
,”
Int. J. Adv. Manuf. Technol.
,
65
(
1–4
), pp.
155
163
. 10.1007/s00170-012-4157-5
170.
Sun
,
Y.
,
Huang
,
B.
,
Puleo
,
D. A.
, and
Jawahir
,
I. S.
,
2015
, “
Enhanced Machinability of Ti-5553 Alloy From Cryogenic Machining: Comparison with MQL and Flood-Cooled Machining and Modeling
,”
Procedia CIRP
,
31
(
1
), pp.
477
482
. 10.1016/j.procir.2015.03.099
171.
Behrendt
,
T.
,
Zein
,
A.
, and
Min
,
S.
,
2012
, “
Development of an Energy Consumption Monitoring Procedure for Machine Tools
,”
CIRP Ann.
,
61
(
1
), pp.
43
46
. 10.1016/j.cirp.2012.03.103
172.
Lu
,
T.
, and
Jawahir
,
I.
,
2018
,
Energy Efficient Manuf.: Theory Appl.
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
123
157
.
173.
Schoop
,
J.
,
Ambrosy
,
F.
,
Zanger
,
F.
,
Schulze
,
V.
,
Jawahir
,
I. S.
, and
Balk
,
T. J.
,
2015
, “
Increased Surface Integrity in Porous Tungsten From Cryogenic Machining with Cermet Cutting Tool
,”
Mater. Manuf. Processes
, pp.
1
9
. 10.1080/10426914.2015.1048467
174.
Busbaher
,
D.
,
Schoop
,
J.
,
Jawahir
,
I. S.
, and
Balk
,
T. J.
,
2015
, “
Observations on Cutting Edge Radius Effects in Cryogenic Machining of Porous Tungsten
,”
Vacuum Electronics Conference (IVEC), 2015
,
Monterey, CA
,
Apr. 27–29
, IEEE International, pp.
1
2
.
175.
Schoop
,
J.
,
Ambrosy
,
F.
,
Zanger
,
F.
,
Schulze
,
V.
,
Balk
,
T. J.
, and
Jawahir
,
I. S.
,
2016
, “
Cryogenic Machining of Porous Tungsten for Enhanced Surface Integrity
,”
J. Mater. Process. Technol.
,
229
, pp.
614
621
. 10.1016/j.jmatprotec.2015.10.002
176.
Schoop
,
J.
,
Jawahir
,
I. S.
, and
Balk
,
T. J.
,
2015
, “
Size Effects in Finish Machining of Porous Powdered Metal for Engineered Surface Quality
,”
Precision Eng.
,
44
(
1
), pp.
180
191
. 10.1016/j.precisioneng.2015.12.004
177.
Lu
,
T.
,
Dillon
,
O. W.
, and
Jawahir
,
I.
,
2013
,
A Thermal Analysis Framework for Cryogenic Machining and its Contribution to Product and Process Sustainability
. 10.14279/depositonce-3753
178.
Lauwers
,
B.
,
Klocke
,
F.
,
Klink
,
A.
,
Tekkaya
,
A. E.
,
Neugebauer
,
R.
, and
Mcintosh
,
D.
,
2014
, “
Hybrid Processes in Manufacturing
,”
CIRP Ann.
,
63
(
2
), pp.
561
583
. 10.1016/j.cirp.2014.05.003
179.
Williams
,
S. W.
,
Martina
,
F.
,
Addison
,
A. C.
,
Ding
,
J.
,
Pardal
,
G.
, and
Colegrove
,
C.
,
2016
, “
Wire + Arc Additive Manufacturing
,”
Mater. Sci. Technol.
,
32
(
7
), pp.
641
647
. 10.1179/1743284715Y.0000000073
You do not currently have access to this content.