The emergence of cloud computing, industrial internet of things (IIoT), and new machine learning techniques have shown the potential to advance prognostics and health management (PHM) in smart manufacturing. While model-based PHM techniques provide insight into the progression of faults in mechanical components, certain assumptions on the underlying physical mechanisms for fault development are required to develop predictive models. In situations where there is a lack of adequate prior knowledge of the underlying physics, data-driven PHM techniques have been increasingly applied in the field of smart manufacturing. One of the limitations of current data-driven methods is that large volumes of training data are required to make accurate predictions. Consequently, computational efficiency remains a primary challenge, especially when large volumes of sensor-generated data need to be processed in real-time applications. The objective of this research is to introduce a cloud-based parallel machine learning algorithm that is capable of training large-scale predictive models more efficiently. The random forests (RFs) algorithm is parallelized using the MapReduce data processing scheme. The MapReduce-based parallel random forests (PRFs) algorithm is implemented on a scalable cloud computing system with varying combinations of processors and memories. The effectiveness of this new method is demonstrated using condition monitoring data collected from milling experiments. By implementing RFs in parallel on the cloud, a significant increase in the processing speed (14.7 times in terms of increase in training time) has been achieved, with a high prediction accuracy of tool wear (eight times in terms of reduction in mean squared error (MSE)).

References

1.
Valdez‐Flores
,
C.
, and
Feldman
,
R. M.
,
1989
, “
A Survey of Preventive Maintenance Models for Stochastically Deteriorating Single‐Unit Systems
,”
Nav. Res. Logist.
,
36
(
4
), pp.
419
446
.http://onlinelibrary.wiley.com/doi/10.1002/1520-6750(198908)36:4%3C419::AID-NAV3220360407%3E3.0.CO;2-5/abstract
2.
Wu
,
D.
,
Terpenny
,
J.
,
Zhang
,
L.
,
Gao
,
R.
, and
Kurfess
,
T.
,
2016
, “Fog-Enabled Architecture for Data-Driven Cyber-Manufacturing Systems,”
ASME
Paper No. MSEC2016-8559.
3.
Hu
,
C.
,
Youn
,
B. D.
, and
Kim
,
T.
,
2012
, “
Semi-Supervised Learning With Co-Training for Data-Driven Prognostics
,” IEEE Conference on Prognostics and Health Management (
PHM
)
,
Denver, CO, June 18–21, pp.
1
10
.
4.
Gao
,
R.
,
Wang
,
L.
,
Teti
,
R.
,
Dornfeld
,
D.
,
Kumara
,
S.
,
Mori
,
M.
, and
Helu
,
M.
,
2015
, “
Cloud-Enabled Prognosis for Manufacturing
,”
CIRP Ann. Manuf. Technol.
,
64
(
2
), pp.
749
772
.
5.
Daigle
,
M. J.
, and
Goebel
,
K.
,
2013
, “
Model-Based Prognostics with Concurrent Damage Progression Processes
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
43
(
3
), pp.
535
546
.
6.
Si
,
X.-S.
,
Wang
,
W.
,
Hu
,
C.-H.
,
Chen
,
M.-Y.
, and
Zhou
,
D.-H.
,
2013
, “
A Wiener-Process-Based Degradation Model With a Recursive Filter Algorithm for Remaining Useful Life Estimation
,”
Mech. Syst. Signal Process.
,
35
(
1
), pp.
219
237
.
7.
Dong
,
M.
, and
He
,
D.
,
2007
, “
Hidden Semi-Markov Model-Based Methodology for Multi-Sensor Equipment Health Diagnosis and Prognosis
,”
Eur. J. Oper. Res.
,
178
(
3
), pp.
858
878
.
8.
Saha
,
B.
,
Goebel
,
K.
, and
Christophersen
,
J.
,
2009
, “
Comparison of Prognostic Algorithms for Estimating Remaining Useful Life of Batteries
,”
Trans. Inst. Meas. Control
,
31
(3–4), pp.
293
308
.
9.
Wang
,
P.
, and
Gao
,
R. X.
,
2015
, “
Adaptive Resampling-Based Particle Filtering for Tool Life Prediction
,”
J. Manuf. Syst.
,
37
(Part 2), pp.
528
534
.
10.
Malhi
,
A.
,
Yan
,
R.
, and
Gao
,
R. X.
,
2011
, “
Prognosis of Defect Propagation Based on Recurrent Neural Networks
,”
IEEE Trans. Instrum. Meas.
,
60
(
3
), pp.
703
711
.
11.
Sick
,
B.
,
2002
, “
On-Line and Indirect Tool Wear Monitoring in Turning With Artificial Neural Networks: A Review of More Than a Decade of Research
,”
Mech. Syst. Signal Process.
,
16
(
4
), pp.
487
546
.
12.
Siddhpura
,
A.
, and
Paurobally
,
R.
,
2013
, “
A Review of Flank Wear Prediction Methods for Tool Condition Monitoring in a Turning Process
,”
Int. J. Adv. Manuf. Technol.
,
65
(
1–4
), pp.
371
393
.
13.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process.
,
42
(
1
), pp.
314
334
.
14.
Zhang
,
J.
, and
Lee
,
J.
,
2011
, “
A Review on Prognostics and Health Monitoring of Li-Ion Battery
,”
J. Power Sources
,
196
(
15
), pp.
6007
6014
.
15.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
16.
Biau
,
G.
,
2012
, “
Analysis of a Random Forests Model
,”
J. Mach. Learn. Res.
,
13
(1), pp.
1063
1095
.https://dl.acm.org/citation.cfm?id=2343682&dl=ACM&coll=DL&CFID=990624679&CFTOKEN=62919329
17.
Wang
,
L.
,
2008
, “
Wise-Shopfloor: An Integrated Approach for Web-Based Collaborative Manufacturing
,”
IEEE Trans. Syst. Man Cybern., Part C
,
38
(
4
), pp.
562
573
.
18.
Wang
,
L.
,
2013
, “
Machine Availability Monitoring and Machining Process Planning Towards Cloud Manufacturing
,”
CIRP J. Manuf. Sci. Technol.
,
6
(
4
), pp.
263
273
.
19.
Tao
,
F.
,
Zuo
,
Y.
,
Da
,
X. L.
, and
Zhang
,
L.
,
2014
, “
IoT-Based Intelligent Perception and Access of Manufacturing Resource Toward Cloud Manufacturing
,”
IEEE Trans. Ind. Inf.
,
10
(
2
), pp.
1547
1557
.
20.
Tao
,
F.
,
Cheng
,
Y.
,
Da Xu
,
L.
,
Zhang
,
L.
, and
Li
,
B. H.
,
2014
, “
CCIoT-CMfg: Cloud Computing and Internet of Things-Based Cloud Manufacturing Service System
,”
IEEE Trans. Ind. Inf.
,
10
(
2
), pp.
1435
1442
.
21.
Niaki
,
F. A.
,
Ulutan
,
D.
, and
Mears
,
L.
,
2015
, “
In-Process Tool Flank Wear Estimation in Machining Gamma-Prime Strengthened Alloys Using Kalman Filter
,”
Procedia Manuf.
,
1
, pp.
696
707
.
22.
Wang
,
P.
,
Gao
,
R. X.
,
Wu
,
D.
, and
Terpenny
,
J.
,
2016
, “
A Computational Framework for Cloud-Based Machine Prognosis
,” 49th CIRP Conference on Manufacturing Systems (
CIRP-CMS
), Stuttgart, Germany, May 25–27, pp. 309–314.https://doi.org/10.1016/j.procir.2016.11.054
23.
Wu
,
D.
,
Rosen
,
D. W.
,
Wang
,
L.
, and
Schaefer
,
D.
,
2015
, “
Cloud-Based Design and Manufacturing: A New Paradigm in Digital Manufacturing and Design Innovation
,”
Comput. Aided Des.
,
59
, pp.
1
14
.
24.
Wu
,
D.
,
Greer
,
M. J.
,
Rosen
,
D. W.
, and
Schaefer
,
D.
,
2013
, “
Cloud Manufacturing: Strategic Vision and State-of-the-Art
,”
J. Manuf. Syst.
,
32
(
4
), pp.
564
579
.
25.
Xu
,
X.
,
2012
, “
From Cloud Computing to Cloud Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
28
(
1
), pp.
75
86
.
26.
Bi
,
Z.
,
Da
,
X. L.
, and
Wang
,
C.
,
2014
, “
Internet of Things for Enterprise Systems of Modern Manufacturing
,”
IEEE Trans. Ind. Inf.
,
10
(
2
), pp.
1537
1546
.
27.
Lee
,
J.
,
Bagheri
,
B.
, and
Kao
,
H. A.
,
2015
, “
A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems
,”
Manuf. Lett.
,
3
, pp.
18
23
.
28.
Wang
,
C.
,
Bi
,
Z.
, and
Da Xu
,
L.
,
2014
, “
IoT and Cloud Computing in Automation of Assembly Modeling Systems
,”
IEEE Trans. Ind. Inf.
,
10
(
2
), pp.
1426
1434
.
29.
Mourtzis
,
D.
,
Vlachou
,
E.
,
Xanthopoulos
,
N.
,
Givehchi
,
M.
, and
Wang
,
L.
,
2016
, “
Cloud-Based Adaptive Process Planning Considering Availability and Capabilities of Machine Tools
,”
J. Manuf. Syst.
,
39
, pp.
1
8
.
30.
Mai
,
J.
,
Zhang
,
L.
,
Tao
,
F.
, and
Ren
,
L.
,
2016
, “
Customized Production Based on Distributed 3D Printing Services in Cloud Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
84
(
1–4
), pp.
71
83
.
31.
Kamarthi
,
S.
,
Kumara
,
S.
, and
Cohen
,
P.
,
2000
, “
Flank Wear Estimation in Turning Through Wavelet Representation of Acoustic Emission Signals
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
12
19
.
32.
Bukkapatnam
,
S. T.
,
Kumara
,
S. R.
, and
Lakhtakia
,
A.
,
2000
, “
Fractal Estimation of Flank Wear in Turning
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
1
), pp.
89
94
.
33.
Taylor
,
F. W.
,
1907
,
On the Art of Cutting Metals
,
American Society of Mechanical Engineers
,
New York
.
34.
Ertunc
,
H. M.
,
Loparo
,
K. A.
, and
Ocak
,
H.
,
2001
, “
Tool Wear Condition Monitoring in Drilling Operations Using Hidden Markov Models (HMMs)
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1363
1384
.
35.
Atlas
,
L.
,
Ostendorf
,
M.
, and
Bernard
,
G. D.
,
2000,
Hidden Markov Models for Monitoring Machining Tool-Wear
,” IEEE International Conference on Acoustics, Speech, and Signal Processing (
ICASSP
), Istanbul, Turkey, June 5–9, pp.
3887
3890
.
36.
Zhu
,
K.
,
San Wong
,
Y.
, and
Hong
,
G. S.
,
2009
, “
Multi-Category Micro-Milling Tool Wear Monitoring With Continuous Hidden Markov Models
,”
Mech. Syst. Signal Process.
,
23
(
2
), pp.
547
560
.
37.
Wang
,
J.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2015
, “
Enhanced Particle Filter for Tool Wear Prediction
,”
J. Manuf. Syst.
,
36
, pp.
35
45
.
38.
Elangovan
,
M.
,
Devasenapati
,
S. B.
,
Sakthivel
,
N.
, and
Ramachandran
,
K.
,
2011
, “
Evaluation of Expert System for Condition Monitoring of a Single Point Cutting Tool Using Principle Component Analysis and Decision Tree Algorithm
,”
Expert Syst. Appl.
,
38
(
4
), pp.
4450
4459
.
39.
Shi
,
D.
, and
Gindy
,
N. N.
,
2007
, “
Tool Wear Predictive Model Based on Least Squares Support Vector Machines
,”
Mech. Syst. Signal Process.
,
21
(
4
), pp.
1799
1814
.
40.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Gao
,
R.
, and
Kumara
,
S.
,
2017
, “
A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071018
.
41.
Meinshausen
,
N.
,
2006
, “
Quantile Regression Forests
,”
J. Mach. Learn. Res.
,
7
, pp.
983
999
.http://www.jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf
42.
Dean
,
J.
, and
Ghemawat
,
S.
,
2008
, “
MapReduce: Simplified Data Processing on Large Clusters
,”
Commun. ACM
,
51
(
1
), pp.
107
113
.
43.
Chu
,
C.
,
Kim
,
S. K.
,
Lin
,
Y.-A.
,
Yu
,
Y.
,
Bradski
,
G.
,
Ng
,
A. Y.
, and
Olukotun
,
K.
,
2007
, “
Map-Reduce for Machine Learning on Multicore
,”
Adv. Neural Inf. Process. Syst.
,
19
, p.
281
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.3854&rep=rep1&type=pdf
44.
Censor
,
Y.
, and
Zenios
,
S. A.
,
1997
,
Parallel Optimization: Theory, Algorithms, and Applications
,
Oxford University Press
,
New York
.
45.
Li
,
X.
,
Lim
,
B.
,
Zhou
,
J.
,
Huang
,
S.
,
Phua
,
S.
,
Shaw
,
K.
, and
Er
,
M.
,
2009
, “
Fuzzy Neural Network Modelling for Tool Wear Estimation in Dry Milling Operation
,”
Annual Conference of the Prognostics and Health Management Society
, San Diego, CA, Sept. 27-Oct. 1, pp.
1
11
.https://www.phmsociety.org/node/79
You do not currently have access to this content.